WANICE WHS 700

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

<table>
<thead>
<tr>
<th>Product name</th>
<th>WANICE WHS 700</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synonyms</td>
<td>Super Absorbent Polymer (SAP)</td>
</tr>
<tr>
<td>Other means of identification</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses: Baby diapers, adult diapers, sanitary towels, pet pads, etc.

Details of the supplier of the safety data sheet

<table>
<thead>
<tr>
<th>Registered company name</th>
<th>Wanhua Chemical Group Co., LTD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>No.17, Tianshan Rd, YEDA, Yantai China</td>
</tr>
<tr>
<td>Telephone</td>
<td>0535-3031150</td>
</tr>
<tr>
<td>Fax</td>
<td>0535-338222-1150</td>
</tr>
<tr>
<td>Website</td>
<td><a href="http://www.whchem.com">http://www.whchem.com</a></td>
</tr>
<tr>
<td>Email</td>
<td><a href="mailto:whsds@whchem.com">whsds@whchem.com</a></td>
</tr>
</tbody>
</table>

Emergency telephone number

<table>
<thead>
<tr>
<th>Association / Organisation</th>
<th>Emergency Center of China</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency telephone numbers</td>
<td>+86 532-83889090</td>
</tr>
<tr>
<td>Other emergency telephone numbers</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

<table>
<thead>
<tr>
<th>SUMMARY OF HAZARD IN AN EMERGENCY SITUATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid</td>
</tr>
<tr>
<td>Does not mix with water. Does not burn.</td>
</tr>
<tr>
<td>Irritating to eyes.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Classification [1]</th>
<th>Eye Irritation Category 2A</th>
</tr>
</thead>
</table>

Label elements

<table>
<thead>
<tr>
<th>Hazard pictogram(s)</th>
<th>!</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>SIGNAL WORD</th>
<th>WARNING</th>
</tr>
</thead>
</table>

Hazard statement(s)

| H319 | Causes serious eye irritation. |

Precautionary statement(s) Prevention

| P280 | Wear protective gloves/protective clothing/eye protection/face protection. |
Precautionary statement(s) Response

P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P337+P313 If eye irritation persists: Get medical advice/attention.

Precautionary statement(s) Storage
Not Applicable

Precautionary statement(s) Disposal
Not Applicable

Physical and Chemical Hazard

Health Hazards

<table>
<thead>
<tr>
<th>Exposure Route</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhaled</td>
<td>The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.</td>
</tr>
<tr>
<td>Ingestion</td>
<td>The material has NOT been classified by EC Directives or other classification systems as 'harmful by ingestion'. This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g. liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern.</td>
</tr>
<tr>
<td>Skin Contact</td>
<td>The material is not thought to produce adverse health effects or skin irritation following contact (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.</td>
</tr>
<tr>
<td>Eye</td>
<td>Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/laceration may occur.</td>
</tr>
<tr>
<td>Chronic</td>
<td>Long-term exposure to the product is not thought to produce chronic effects adverse to health (as classified by EC Directives using animal models); nevertheless exposure by all routes should be minimised as a matter of course.</td>
</tr>
</tbody>
</table>

Environmental Hazards
See Section 12

Other hazards

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances
See section below for composition of Mixtures

Mixtures

<table>
<thead>
<tr>
<th>CAS No</th>
<th>%[weight]</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>9003-04-7*</td>
<td>≥93</td>
<td>Sodium polyacrylate</td>
</tr>
<tr>
<td>7732-18-5*</td>
<td>≤7</td>
<td>Water</td>
</tr>
</tbody>
</table>

SECTION 4 FIRST AID MEASURES

Description of first aid measures

<table>
<thead>
<tr>
<th>Exposure Route</th>
<th>Description</th>
</tr>
</thead>
</table>
| Eye Contact   | If this product comes in contact with the eyes:  
  - Wash out immediately with fresh running water.  
  - Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.  
  - Seek medical attention without delay; if pain persists or recurs seek medical attention.  
  - Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. |
| Skin Contact  | If skin or hair contact occurs:  
  - Flush skin and hair with running water (and soap if available).  
  - Seek medical attention in event of irritation. |
| Inhalation    | If fumes, aerosols or combustion products are inhaled remove from contaminated area.  
  - Other measures are usually unnecessary. |
| Ingestion     | Immediately give a glass of water.  
  - First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor. |

Advise for rescue team (PPE requirement for rescue personnel)

Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

- There is no restriction on the type of extinguisher which may be used.
Use extinguishing media suitable for surrounding area.

### Special hazards arising from the substrate or mixture

**Fire Incompatibility**

None known.

---

**Advice for firefighters**

- **Fire Fighting**
  - Alert Fire Brigade and tell them location and nature of hazard.
  - Wear breathing apparatus plus protective gloves in the event of a fire.
  - Prevent, by any means available, spillage from entering drains or water courses.
  - Use fire fighting procedures suitable for surrounding area.
  - **DO NOT** approach containers suspected to be hot.
  - Cool fire exposed containers with water spray from a protected location.
  - If safe to do so, remove containers from path of fire.
  - Equipment should be thoroughly decontaminated after use.

- **Fire/Explosion Hazard**
  - Non-combustible.
  - Not considered a significant fire risk, however containers may burn. May emit corrosive fumes.

---

### SECTION 6 ACCIDENTAL RELEASE MEASURES

#### Personal precautions, protective equipment and emergency procedures

See section 8

#### Measures for Preventing Secondary Contamination

Refer to section above

#### Environmental precautions

See section 12

#### Methods and material for containment and cleaning up

**Minor Spills**

- Clean up all spills immediately.
- Avoid breathing dust and contact with skin and eyes.
- Wear protective clothing, gloves, safety glasses and respiratory equipment.
- Use dry clean-up procedures and avoid generating dust.
- Sweep up, shovel up or vacuum up (consider explosion-proof machines designed to be grounded during storage and use).
- Place spilled material in clean, dry, sealable, labelled container.

**Major Spills**

- Moderate hazard:
  - **CAUTION**: Advise personnel in area.
  - Alert Emergency Services and tell them location and nature of hazard.
  - Control personal contact by wearing protective clothing.
  - Prevent, by any means available, spillage from entering drains or water courses.
  - Recover product wherever possible.
  - **IF DRY**: Use dry clean-up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. **IF WET**: Vacuum/shovel up and place in labelled containers for disposal.
  - ALWAYS: Wash area down with large amounts of water and prevent runoff into drains.
  - If contamination of drains or waterways occurs, advise Emergency Services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

---

### SECTION 7 HANDLING AND STORAGE

#### Precautions for safe handling

**Safe handling**

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- **DO NOT** enter confined spaces until atmosphere has been checked.
- **DO NOT** allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- **When handling, DO NOT eat, drink or smoke.**
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately. Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer’s storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

**Other information**

- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry area protected from environmental extremes.
- Store away from incompatible materials and foodstuffs.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer’s storage and handling recommendations contained within this SDS.

For major quantities:

- Consider storage in bunded areas - ensure storage areas are isolated from sources of community water (including stormwater, ground water, lakes and...
Material name | Original IDLH | Revised IDLH
---|---|---
TEEL-1 | Not Available | Not Available
TEEL-2 | Not Available | Not Available
TEEL-3 | None known | Not Available

**Material Data**

Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV-C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA. OSHA (USA) concluded that exposure to sensory irritants can:

- cause inflammation
- cause increased susceptibility to other irritants and infectious agents
- lead to permanent injury or dysfunction
- cause increased susceptibility to other irritants and infectious agents
- permit greater absorption of hazardous substances and
- acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

**Exposure Controls**

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

- Process controls which involve changing the way a job activity or process is done to reduce the risk.
- Enclosure and/or isolation of emission source which keeps a selected hazard 'physically' away from the worker and ventilation that strategically 'adds' and 'removes' air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.
- Employers may need to use multiple types of controls to prevent employee overexposure.

Suitable container:
- Lined metal can, lined metal pail/ can.
- Plastic pail.
- Polyliner drum.
- Packing as recommended by manufacturer.
- Check all containers are clearly labelled and free from leaks.

**SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION**

**Control Parameters**

**OCCUPATIONAL EXPOSURE LIMITS (OEL)**

**INGREDIENT DATA**

Not Available

**Ingredient Limits**

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Material name</th>
<th>TEEL-1</th>
<th>TEEL-2</th>
<th>TEEL-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>WANICE WHS 700</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

**Ingredient**

<table>
<thead>
<tr>
<th>Sodium polyacrylate</th>
<th>Not Available</th>
<th>Not Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

**Material Data**

Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV-C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA. OSHA (USA) concluded that exposure to sensory irritants can:

- cause inflammation
- cause increased susceptibility to other irritants and infectious agents
- lead to permanent injury or dysfunction
- permit greater absorption of hazardous substances and
- acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.
Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 metres distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

### Personal protection

- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adhesion for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly (CDC NIOSH Current Intelligence Bulletin 59) [AS/NZS 1336 or national equivalent]

### Eye and face protection

- Chemical goggles.
- Safety spectacles with side shields.
- Eye protection may be required in the event of air currents or. (See Other protection below)

### Skin protection

- The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact breakthrough time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.
- Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.
- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:
  - frequency and duration of contact,
  - chemical resistance of glove material,
  - glove thickness and dexterity
- Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent),
  - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
  - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
  - Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long term use.
  - Contaminated gloves should be replaced.
- As defined in ASTM F-739-96 in any application, gloves are rated as:
  - Excellent when breakthrough time > 480 min
  - Good when breakthrough time > 20 min
  - Fair when breakthrough time < 20 min
  - Poor when glove material degrades
- For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.
- Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task.
- Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:
  - Thinner gloves (down to 0.1 mm or less) may be required when a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
  - Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential
- Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.
- Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.
  - polychloroprene.
  - nitrile rubber.
  - butyl rubber.
  - fluorocautchouc.
  - polyvinyl chloride.
- Gloves should be examined for wear and/ or degradation constantly.

### Hands/feet protection

- Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.
- Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.
  - polychloroprene.
  - nitrile rubber.
  - butyl rubber.
  - fluorocautchouc.
  - polyvinyl chloride.
- Gloves should be examined for wear and/ or degradation constantly.

### Body protection

- See Other protection below

### Other protection

- Overalls.
- PVC, apron.
- Barrier cream.
- Skin cleansing cream.
- Eye wash unit.

### Respiratory protection

Particulate. (AS/NZS 1716 & 1715, EN 143:2000 & 149:001, ANSI Z88 or national equivalent)

<table>
<thead>
<tr>
<th>Required Minimum Protection Factor</th>
<th>Half-Face Respirator</th>
<th>Full-Face Respirator</th>
<th>Powered Air Respirator</th>
</tr>
</thead>
<tbody>
<tr>
<td>up to 10 x ES</td>
<td>P1</td>
<td>-</td>
<td>PAPR-P1</td>
</tr>
<tr>
<td>up to 50 x ES</td>
<td>Air-line*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>up to 100 x ES</td>
<td>Air-line**</td>
<td>P2</td>
<td>PAPR-P2</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>P3</td>
<td>-</td>
</tr>
</tbody>
</table>
Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures. The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker’s exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option). Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended. Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program. Use approved positive flow mask if significant quantities of dust becomes airborne. Try to avoid creating dust conditions.

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

<table>
<thead>
<tr>
<th>Information on basic physical and chemical properties</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>White powder</td>
</tr>
<tr>
<td>Physical state</td>
<td>Solid</td>
</tr>
<tr>
<td>Odour</td>
<td>Slight</td>
</tr>
<tr>
<td>Odour threshold</td>
<td>Not Available</td>
</tr>
<tr>
<td>pH (as supplied)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Melting point / freezing point (°C)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Initial boiling point and boiling range (°C)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Flash point (°C)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Evaporation rate</td>
<td>Not Available</td>
</tr>
<tr>
<td>Flammability</td>
<td>Not Available</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Vapour pressure (kPa)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Solubility in water</td>
<td>Immiscible</td>
</tr>
<tr>
<td>Vapour density (Air = 1)</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

SECTION 10 STABILITY AND REACTIVITY

| Reactivity                                                           | See section 7 |
| Chemical stability                                                   | Product is considered stable and hazardous polymerisation will not occur. |
| Possibility of hazardous reactions                                   | See section 7 |
| Conditions to avoid                                                  | See section 7 |
| Incompatible materials                                               | See section 7 |
| Hazardous decomposition products                                      | See section 5 |

SECTION 11 TOXICOLOGICAL INFORMATION

<table>
<thead>
<tr>
<th>WANICE WHS 700</th>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sodium polyacrylate</th>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Oral (rat) LD50: &gt;8250 mg/kg[^2]</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Water</th>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Oral (rat) LD50: &gt;90000 mg/kg[^2]</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Legend:
1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer’s SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances
### SECTION 12 ECOLOGICAL INFORMATION

#### Toxicity

<table>
<thead>
<tr>
<th>ENDPOINT</th>
<th>TEST DURATION (HR)</th>
<th>SPECIES</th>
<th>VALUE</th>
<th>SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC50</td>
<td>96</td>
<td>Fish</td>
<td>&gt;100mg/L</td>
<td>2</td>
</tr>
<tr>
<td>NOEC</td>
<td>96</td>
<td>Fish</td>
<td>&gt;100mg/L</td>
<td>2</td>
</tr>
</tbody>
</table>

#### Persistence and degradability

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>LOW</td>
<td>LOW</td>
</tr>
</tbody>
</table>

#### Bioaccumulative potential

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Bioaccumulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>Bioconcentration</td>
</tr>
</tbody>
</table>

#### Mobility in soil

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>LOW (KOC = 14.3)</td>
</tr>
</tbody>
</table>

#### Other adverse effects

No data available

### SECTION 13 DISPOSAL CONSIDERATIONS

#### Waste treatment methods

- Recycle wherever possible or consult manufacturer for recycling options.
- Consult State Land Waste Management Authority for disposal.
- Bury residue in an authorised landfill.
- Recycle containers if possible, or dispose of in an authorised landfill.

#### Contaminated packing materials

Refer to section above

#### Precautions for Transport

Refer to section above

### SECTION 14 TRANSPORT INFORMATION

#### Labels Required

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marine Pollutant</td>
<td>NO</td>
</tr>
<tr>
<td>Not Applicable</td>
<td></td>
</tr>
</tbody>
</table>

Land transport (UN): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS
Air transport (ICAO- IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

Precautions for Transport

Suitable Containers

See section 7

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

| SODIUM POLYACRYLATE (9003-04-7*) IS FOUND ON THE FOLLOWING REGULATORY LISTS |
| China Inventory of Existing Chemical Substances | IMO MARPOL (Annex II) - List of Noxious Liquid Substances Carried in Bulk |
| GESAMP/EHS Composite List - GESAMP Hazard Profiles | IMO IBC Code Chapter 17: Summary of minimum requirements |

| WATER (7732-18-5*) IS FOUND ON THE FOLLOWING REGULATORY LISTS |
| China Inventory of Existing Chemical Substances | IMO IBC Code Chapter 18: List of products to which the Code does not apply |

National Inventory Status

<table>
<thead>
<tr>
<th>National Inventory</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia - AICS</td>
<td>Yes</td>
</tr>
<tr>
<td>Canada - DSL</td>
<td>Yes</td>
</tr>
<tr>
<td>Canada - NDSL</td>
<td>No (Water; Sodium polyacrylate)</td>
</tr>
<tr>
<td>China - IECSC</td>
<td>Yes</td>
</tr>
<tr>
<td>Europe - EINEC / ELINCS / NLP</td>
<td>No (Sodium polyacrylate)</td>
</tr>
<tr>
<td>Japan - ENCS</td>
<td>Yes</td>
</tr>
<tr>
<td>Korea - KECI</td>
<td>Yes</td>
</tr>
<tr>
<td>New Zealand - NZIoC</td>
<td>Yes</td>
</tr>
<tr>
<td>Philippines - PICCS</td>
<td>Yes</td>
</tr>
<tr>
<td>USA - TSCA</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Legend: Yes = All ingredients are on the inventory  
No = Not determined or one or more ingredients are not on the inventory and are not exempt from listing (see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Revision Date 18/02/2019
Initial Date 18/02/2019

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC—TWA: Permissible Concentration-Time Weighted Average
PC—STEL: Permissible Concentration-Short Term Exposure Limit
IARC: International Agency for Research on Cancer
ACGIH: American Conference of Governmental Industrial Hygienists
STEL: Short Term Exposure Limit
TEEL: Temporary Emergency Exposure Limit
IDLH: Immediately Dangerous to Life or Health Concentrations
OSF: Odour Safety Factor
NOAEL: No Observed Adverse Effect Level
LOAEL: Lowest Observed Adverse Effect Level
TLV: Threshold Limit Value
LOD: Limit Of Detection
OTV: Odour Threshold Value
BCF: BioConcentration Factors
BEI: Biological Exposure Index

Disclaimer

The information in the SDS applies only for the specified product and does not include mixtures of this product with other substances and mixtures. The SDS provides product safety information for personnel trained to use this product only.

Powered by AuthorITe, from Chemwatch.