WANNATE® HB-75B
WANHUA CHEMICAL GROUP Co., LTD.

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

<table>
<thead>
<tr>
<th>Product name</th>
<th>WANNATE® HB-75B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synonyms</td>
<td>Solution of 1, 6-Hexamethylene Disocyanate Based Biuret Polysocyanate</td>
</tr>
<tr>
<td>Proper shipping name</td>
<td>RESIN SOLUTION, flammable</td>
</tr>
<tr>
<td>Other means of</td>
<td>Identification</td>
</tr>
<tr>
<td>identification</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses

Binding agents, intermediates; other: isocyanate component for polyurethanes. The highly reactive disocyanates are important materials used in production of PUR products. Their reaction with various polyols and auxiliary materials is utilized to obtain miscellaneous material structures like foams, coatings or adhesives.

Details of the supplier of the safety data sheet

Registered company name

WANHUA CHEMICAL GROUP Co., LTD.

Address

No.17 Tianshan Road, Yantai, Shandong,

Telephone

0535-3031150

Fax

0535-338222-1150

Website

https://www.whchem.com

Email

whsds@whchem.com

Emergency telephone number

Association / Organisation

Not Available

Emergency telephone numbers

+86 532-83889090

Other emergency telephone numbers

+86 535-6203123

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

SUMMARY OF HAZARD IN AN EMERGENCY SITUATION

Liquid.

Does not mix with water. Flammable.

Harmful by inhalation.

May cause SENSITISATION by inhalation.

May cause SENSITISATION by skin contact.

Repeated exposure may cause skin dryness and cracking.

Classification

| Classification [1] | Skin Corrosion/Irritation Category 3, Skin Sensitizer Category 1, Respiratory Sensitizer Category 1, Eye Irritation Category 2B, Acute Toxicity (Inhalation) Category 4, Specific target organ toxicity - single exposure Category 3 (narcotic effects), Flammable Liquid Category 3, Acute Toxicity (Dermal) Category 5 |

Legend:

Label elements

Hazard pictogram(s)

SIGNAL WORD

DANGER
Hazard statement(s)

- **H316** Causes mild skin irritation.
- **H317** May cause an allergic skin reaction.
- **H334** May cause allergy or asthma symptoms or breathing difficulties if inhaled.
- **H320** Causes eye irritation.
- **H322** Harmful if inhaled.
- **H336** May cause drowsiness or dizziness.
- **H26** Flammable liquid and vapour.
- **H313** May be harmful in contact with skin.

Precautionary statement(s) Prevention

- **P210** Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.
- **P261** Avoid breathing mist/vapours/spray.
- **P271** Use only outdoors or in a well-ventilated area.
- **P280** Wear protective gloves/protective clothing/eye protection/face protection.
- **P284** [In case of inadequate ventilation] wear respiratory protection.
- **P240** Ground/bond container and receiving equipment.
- **P241** Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment.
- **P242** Use only non-sparking tools.
- **P243** Take precautionary measures against static discharge.
- **P272** Contaminated work clothing should not be allowed out of the workplace.

Precautionary statement(s) Response

- **P304+P340** IF INHALED: Remove person to fresh air and keep comfortable for breathing.
- **P342+P311** If experiencing respiratory symptoms: Call a POISON CENTER/doctor/physician/first aider.
- **P370+P378** In case of fire: Use alcohol resistant foam or normal protein foam to extinguish.
- **P302+P352** IF ON SKIN: Wash with plenty of water and soap.
- **P305+P351+P338** IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
- **P312** Call a POISON CENTER/doctor/physician/first aider if you feel unwell.
- **P333+P313** If skin irritation or rash occurs: Get medical advice/attention.
- **P337+P313** If eye irritation persists: Get medical advice/attention.
- **P362+P364** Take off contaminated clothing and wash it before reuse.
- **P303+P361+P353** IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water/shower.

Precautionary statement(s) Storage

- **P403+P235** Store in a well-ventilated place. Keep cool.
- **P405** Store locked up.

Precautionary statement(s) Disposal

- **P501** Dispose of contents/container in accordance with local regulations.

Physical and Chemical Hazard

- **Liquid.** Does not mix with water.
- **Flammable.**
- **Toxic smoke/fumes in a fire.** Reacts with water.

Health Hazards

Inhaled
Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be harmful. The material is not thought to produce respiratory irritation (as classified by EC Directives using animal models). Nevertheless inhalation of vapours, fumes or aerosols, especially for prolonged periods, may produce respiratory discomfort and occasionally, distress. The vapour/mist may be highly irritating to the upper respiratory tract and lungs; the response may be severe enough to produce bronchitis and pulmonary oedema. Possible neurological symptoms arising from isocyanate exposure include headache, insomnia, euphoria, ataxia, anxiety neurosis, depression and paranoia. Gastrointestinal disturbances are characterised by nausea and vomiting. Pulmonary sensitisation may produce asthmatic reactions ranging from minor breathing difficulties to severe allergic attacks; this may occur following a single acute exposure or may develop without warning for several hours after exposure. Sensitized people can react to very low doses, and should not be allowed to work in situations allowing exposure to this material. Continued exposure of sensitised persons may lead to possible long term respiratory impairment. Inhalation hazard is increased at higher temperatures.

Ingestion
Toxic effects may result from the accidental ingestion of the material; animal experiments indicate that ingestion of less than 40 gram may be fatal or may produce serious damage to the health of the individual.

Skin Contact
Repeated exposure may cause skin cracking, flaking or drying following normal handling and use. Skin contact with the material may damage the health of the individual; systemic effects may result following absorption. Open cuts, abraded or irritated skin should not be exposed to this material.

Continued...
Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

The material produces moderate skin irritation; evidence exists, or practical experience predicts, that the material either

- produces moderate inflammation of the skin in a substantial number of individuals following direct contact, and/or
- produces significant, but moderate, inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period.

Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intraepidermal oedema of the epidermis.

Eye

Limited evidence or practical experience suggests, that the material may cause severe eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Eye contact may cause significant inflammation with pain. Corneal injury may occur; permanent impairment of vision may result unless treatment is prompt and adequate.

Repeated or prolonged exposure may cause severe inflammation (similar to windburn) characterised by a temporary redness of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ceruoration may occur.

Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic).

Chronic

Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals.

Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following.

Persons with a history of asthma or other respiratory problems or are known to be sensitised, should not be engaged in any work involving the handling of isocyanates. [CCTRADE-Bayer, APMF]

A 90-day inhalation study in rats with polymeric MDI (6 hours/day, 5 days/week) produced moderate to severe hyperplastic inflammatory lesions in the nasal cavities and lungs at levels of 8 mg/m3 or greater.

Polyisocyanates still contain small amounts of monomeric isocyanate (typically <0.5 parts per weight) and both – the polyisocyanate and the monomer - have toxicological importance. In addition, solvents also contribute to the overall toxicity of these products.

Due to the higher molecular weight and the much lower vapor pressure the polyisocyanates exhibit a significantly reduced health hazard as compared to the corresponding monomers. Nevertheless they should only be handled under controlled conditions. They are not or only slightly irritating to the skin and eyes, but might be irritating to the respiratory tract (nose, throat, lung). Polyisocyanates might act as skin sensitisers On that basis there is clear evidence from sensitive animal models that aliphatic polyisocyanates and prepolymer (HDI-based as well as IPDI-based, for example) may cause skin sensitisation. It is decided to classify all HDI-based and IPDI-based polyisocyanates and prepolymer as skin sensitisers. From animal models, however, there is no evidence that polyisocyanates are sensitising to the respiratory tract. Results from animal tests with repeated aerosol exposures indicate that under these conditions the respiratory tract is the primary target of aliphatic polyisocyanates, other organs are not significantly affected.

Available information does not provide evidence that polyisocyanates might either be mutagenic, carcinogenic or toxic to reproduction.

Polymers based on isocyanate monomers (polyurethanes) are generally of low concern. However, in the majority of cases it is not possible to conclude from the chemical name of the polymer whether an individual polyurethane is, or is not, of low concern.
Description of first aid measures

Eye Contact
If this product comes in contact with the eyes:
- Immediately hold eyelids apart and flush the eye continuously with running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes.
- Transport to hospital or doctor without delay.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Skin Contact
If skin contact occurs:
- Immediately remove all contaminated clothing, including footwear.
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

Inhalation
- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to instigating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor.

Following uptake by inhalation, move person to an area free from risk of further exposure. Oxygen or artificial respiration should be administered as needed. Asthmatic-type symptoms may develop and may be immediate or delayed up to several hours. Treatment is essentially symptomatic. A physician should be consulted.

Ingestion
- IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY.
- For advice, contact a Poisons Information Centre or a doctor.
- Urgent hospital treatment is likely to be needed.
- In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition.
- If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the SDS should be provided. Further action will be the responsibility of the medical specialist.
- If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the SDS.

Where medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise:
- INDUCE vomiting with fingers down the back of the throat; ONLY IF CONSCIOUS. Lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- NOTE: Wear a protective glove when inducing vomiting by mechanical means.

Advise for rescue team (PPE requirement for rescue personnel)

Indication of any immediate medical attention and special treatment needed

Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for noncardiogenic pulmonary oedema and bronchospasm are the most serious consequences of exposure. Markedly symptomatic patients should receive oxygen, ventilatory support and an intravenous line.

For sub-chronic and chronic exposures to isocyanates:

- Some cross-sensitivity occurs between different isocyanates.
- Noncardiogenic pulmonary oedema and bronchospasm are the most serious consequences of exposure. Markedly symptomatic patients should receive oxygen, ventilatory support and an intravenous line.

- Consult a toxicologist as necessary.

- Laboratory analysis of complete blood count, serum electrolytes, BUN, creatinine, glucose, urinalysis, baseline for serum aminotransferases (ALT and AST), calcium, phosphorus and magnesium, may assist in establishing a treatment regime. Other useful analyses include axion and osmolar gaps, arterial blood gases (ABGs), chest radiographs and electrocardiograph.

- Chloride, sodium and potassium should be corrected. Fluid management should be aimed at the maintenance of normal circulating volume. Correction of hypocalcaemia may be indicated.

- Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications.

- Treatment with glucocorticoids and slow-dose corticosteroids may be beneficial.
Treatment for asthma includes inhaled sympathomimetics (epinephrine [adrenalin], terbutaline) and steroids. Activated charcoal (1 g/kg) and a cathartic (sorbitol, magnesium citrate) may be useful for ingestion. Mydriatics, systemic analgesics and topical antibiotics (Sulamyd) may be used for corneal abrasions. There is no effective therapy for sensitised workers.

[Ellenhorn and Barceloux; Medical Toxicology]

NOTE: Isocyanates cause airway restriction in naive individuals with the degree of response dependant on the concentration and duration of exposure. They induce smooth muscle contraction which leads to bronchoconstrictive episodes. Acute changes in lung function, such as decreased FEV1, may not represent sensitivity. [Karol & Jin, Frontiers in Molecular Toxicology, pp 56-61, 1992]

Personnel who work with isocyanates, isocyanate prepolymers or polyisocyanates should have a pre-placement medical examination and periodic examinations thereafter, including a pulmonary function test. Anyone with a medical history of chronic respiratory disease, asthmatic or bronchial attacks, indications of allergic responses, recurrent eczema or sensitisation conditions of the skin should not handle or work with isocyanates. Anyone who develops chronic respiratory distress when working with isocyanates should be removed from exposure and examined by a physician. Further exposure must be avoided if a sensitivity to isocyanates or polyisocyanates has developed.

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media
- Small quantities of water in contact with hot liquid may react violently with generation of a large volume of rapidly expanding hot sticky semi-solid foam. Presents additional hazard when fire fighting in a confined space.
- Cooling with flooding quantities of water reduces this risk.
- Water spray or fog may cause frothing and should be used in large quantities.
- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog - Large fires only.

Special hazards arising from the substrate or mixture

<table>
<thead>
<tr>
<th>Fire Incompatibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result</td>
</tr>
</tbody>
</table>

Advice for firefighters

Fire Fighting
- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves in the event of a fire.
- Prevent, by any means available, spillage from entering drains or water courses.
- Use fire fighting procedures suitable for surrounding area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

Fire/Explosion Hazard
- Liquid and vapour are flammable.
- Moderate fire hazard when exposed to heat or flame.
- Vapour forms an explosive mixture with air.
- Moderate explosion hazard when exposed to heat or flame.
- Vapour may travel a considerable distance to source of ignition.
- Heating may cause expansion or decomposition leading to violent rupture of containers.
- On combustion, may emit toxic fumes of carbon monoxide (CO).
- Combustion products include:
 - carbon dioxide (CO₂)
 - isocyanates
 - hydrogen cyanide
 - and minor amounts of nitrogen oxides (NOₓ).
- Other pyrolysis products typical of burning organic material.
When heated at high temperatures many isocyanates decompose rapidly generating a vapour which pressurises containers, possibly to the point of rupture.
Release of toxic and/or flammable isocyanate vapours may then occur.

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures
See section 8

Measures for Preventing Secondary Contamination
Refer to section above

Environmental precautions
See section 12

Methods and material for containment and cleaning up

Minor Spills
- Remove all ignition sources.
- Clean up all spills immediately.
- Avoid breathing vapours and contact with skin and eyes.
- Control personal contact with the substance, by using protective equipment.
- Contain and absorb small quantities with vermiculite or other absorbent material.
- Wipe up.
- Collect residues in a flammable waste container.

Major Spills
- Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
Stop leak if safe to do so.
- Contain spill with sand, earth or vermiculite.
- Collect recoverable product into labelled containers for recycling.
- Neutralise/decontaminate residue (see Section 13 for specific agent).
- Collect solid residues and seal in labelled drums for disposal.
- Wash area and prevent runoff into drains.
- After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.
- If contamination of drains or waterways occurs, advise emergency services.

Chemical Class: ester and ethers
For release onto land: recommended sorbents listed in order of priority.

<table>
<thead>
<tr>
<th>SORBENT TYPE</th>
<th>RANK</th>
<th>APPLICATION</th>
<th>COLLECTION</th>
<th>LIMITATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAND SPILL - SMALL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cross-linked polymer - particulate</td>
<td>1</td>
<td>shovel</td>
<td>shovel</td>
<td>R, W, SS</td>
</tr>
<tr>
<td>cross-linked polymer - pillow</td>
<td>1</td>
<td>throw</td>
<td>pitchfork</td>
<td>R, DGC, RT</td>
</tr>
<tr>
<td>sorbent clay - particulate</td>
<td>2</td>
<td>shovel</td>
<td>shovel</td>
<td>R, I, P</td>
</tr>
<tr>
<td>wood fiber - particulate</td>
<td>3</td>
<td>shovel</td>
<td>shovel</td>
<td>R, W, P, DGC</td>
</tr>
<tr>
<td>wood fiber - pillow</td>
<td>3</td>
<td>throw</td>
<td>pitchfork</td>
<td>R, P, DGC, RT</td>
</tr>
<tr>
<td>treated wood fiber - pillow</td>
<td>3</td>
<td>throw</td>
<td>pitchfork</td>
<td>DGC, RT</td>
</tr>
<tr>
<td>LAND SPILL - MEDIUM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cross-linked polymer - particulate</td>
<td>1</td>
<td>blower</td>
<td>skiplader</td>
<td>R, W, SS</td>
</tr>
<tr>
<td>cross-linked polymer - pillow</td>
<td>2</td>
<td>throw</td>
<td>skiplader</td>
<td>R, DGC, RT</td>
</tr>
<tr>
<td>sorbent clay - particulate</td>
<td>3</td>
<td>throw</td>
<td>skiplader</td>
<td>R, I, P</td>
</tr>
<tr>
<td>polypropylene - particulate</td>
<td>3</td>
<td>throw</td>
<td>skiplader</td>
<td>W, SS, DGC</td>
</tr>
<tr>
<td>expanded mineral - particulate</td>
<td>4</td>
<td>blower</td>
<td>skiplader</td>
<td>R, I, W, P, DGC</td>
</tr>
<tr>
<td>wood fiber - particulate</td>
<td>4</td>
<td>blower</td>
<td>skiplader</td>
<td>R, W, P, DGC</td>
</tr>
</tbody>
</table>

Legend
DGC: Not effective where ground cover is dense
R: Not reusable
I: Not incinerable
P: Effectiveness reduced when rainy
RT: Not effective where terrain is rugged
SS: Not for use within environmentally sensitive sites
W: Effectiveness reduced when windy

Reference: Sorbents for Liquid Hazardous Substance Cleanup and Control; R.W Melvold et al: Pollution Technology Review No. 150: Noyes Data Corporation 1988

Decontamination:
Treat isocyanate spills with sufficient amounts of isocyanate decontaminant preparation (“neutralising fluid”). Isocyanates and polyisocyanates are generally not miscible with water. Liquid surfactants are necessary to allow better dispersion of isocyanate and neutralising fluids/ preparations. Alkaline neutralisers react faster than water/surfactant mixtures alone.

- Evacuate area from everybody not dealing with the emergency, keep them upwind and prevent further access, remove ignition sources and, if inside building, ventilate area as well as possible.
- Notify supervision and others as necessary.
- Put on personal protective equipment (suitable respiratory protection, face and eye protection, protective suit, gloves and impermeable boots).
- Control source of leakage (where applicable).
- Dike the spill to prevent spreading and to contain additions of decontaminating solution.
- Prevent the material from entering drains.
- Estimate spill pool volume or area.
- Absorb and decontaminate. - Completely cover the spill with wet sand, wet earth, vermiculite or other similar absorbent. - Add neutraliser (for suitable formulations: see below) to the absorbent materials (equal to that of estimated spill pool volume). Intensively contact between spill, absorbent and neutraliser by carefully mixing with a rake and allow to react for 15 minutes
- Shovel absorbent/decontaminant solution mixture into a steel drum.
- Decontaminate surface. - Pour an equal amount of neutraliser solution over contaminated surface. - Scrub area with a stiff bristle brush, using moderate pressure. - Completely cover decontaminant with vermiculite or other similar absorbent. - After 5 minutes, shovel absorbent/decontamination solution mixture into the same steel drum used above.
- Monitor for residual isocyanate. If surface is decontaminated, proceed to next step. If contamination persists, repeat decontamination procedure immediately above
- Place loosely covered drum (release of carbon dioxide) outside for at least 72 hours. Label waste-containing drum appropriately. Remove waste materials for incineration.
- Decontaminate and remove personal protective equipment.
- Return to normal operation.
- Conduct accident investigation and consider measures to prevent reoccurrence.

Formulation A:
- liquid surfactant 0.2-2%
- sodium carbonate 5-10%
- water to 100%

Formulation B:
- liquid surfactant 0.2-2%
- concentrated ammonia 3-8%
Precautions for safe handling

<table>
<thead>
<tr>
<th>Safe handling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avoid all personal contact, including inhalation.</td>
</tr>
<tr>
<td>Wear protective clothing when risk of exposure occurs.</td>
</tr>
<tr>
<td>Use in a well-ventilated area.</td>
</tr>
<tr>
<td>Prevent concentration in hollows and sumps.</td>
</tr>
<tr>
<td>DO NOT enter confined spaces until atmosphere has been checked.</td>
</tr>
<tr>
<td>DO NOT allow material to contact humans, exposed food or food utensils.</td>
</tr>
<tr>
<td>Avoid contact with incompatible materials.</td>
</tr>
<tr>
<td>When handling, DO NOT eat, drink or smoke.</td>
</tr>
<tr>
<td>Keep containers securely sealed when not in use.</td>
</tr>
<tr>
<td>Avoid physical damage to containers.</td>
</tr>
<tr>
<td>Always wash hands with soap and water after handling.</td>
</tr>
<tr>
<td>Work clothes should be laundered separately.</td>
</tr>
<tr>
<td>Launder contaminated clothing before re-use.</td>
</tr>
<tr>
<td>Use good occupational work practice.</td>
</tr>
<tr>
<td>Observe manufacturer's storage and handling recommendations contained within this SDS.</td>
</tr>
</tbody>
</table>

Other information

- Iso cyanates should be stored in adequately bunded areas. Nothing else should be kept within the same bunding. Pre-polymers need not be segregated.
- Drums of isocyanates should be stored under cover, out of direct sunlight, protected from rain, protected from physical damage and well away from moisture, acids and alkalis.
- Where isocyanates are stored at elevated temperatures to prevent solidifying, adequate controls should be installed to prevent the high temperatures and precautions against fire should be taken.
- Where stored in tankers, the more reactive isocyanates should be blanketed with a non-reactive gas such as nitrogen and equipped with absorptive type breather valve (to prevent vapour emissions).
- Transfer systems for isocyanates in bulk storage should be fully enclosed and use pump or vacuum systems. Warning signs, in appropriate languages, should be posted where necessary.
- Areas in which polyurethane foam products are stored should be supplied with good general ventilation. Residual amounts of unreacted isocyanate may be present in the finished foam, resulting in hazardous atmospheric concentrations.
- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

<table>
<thead>
<tr>
<th>Suitable container</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lined metal can, lined metal pail/can.</td>
</tr>
<tr>
<td>Plastic pail.</td>
</tr>
<tr>
<td>Polyliner drum.</td>
</tr>
<tr>
<td>Packing as recommended by manufacturer.</td>
</tr>
<tr>
<td>Check all containers are clearly labelled and free from leaks.</td>
</tr>
</tbody>
</table>

For low viscosity materials:

- Drums and jenicans must be of the non-removable head type.
- Where a can is to be used as an inner package, the can must have a screwed enclosure.

For materials with a viscosity of at least 2680 cSt. (23 deg. C) and solids (between 15 C deg. and 40 deg C.):

- Removable head packaging;
- Cans with friction closures and
- low pressure tubes and cartridges may be used.

Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages.

In addition, where inner packagings are glass and contain liquids of packing group I and II there must be sufficient inert absorbent to absorb any spillage.

* unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.

All inner and sole packagings for substances that have been assigned to Packaging Groups I or II on the basis of inhalation toxicity criteria, must be hermetically sealed.

After application of any of these formulae, let stand for 24 hours.

Formulation B reacts faster than Formulation A. However, ammonia-based neutralisers should be used only under well-ventilated conditions to avoid overexposure to ammonia or if members of the emergency team wear suitable respiratory protection. Formulation C is especially suitable for cleaning of equipment from unreacted isocyanate and neutralizing under freezing conditions. Regard has to be taken to the flammability of the alcoholic solution.

- Avoid contamination with water, alkalies and detergent solutions.
- Material reacts with water and generates gas, pressurises containers with even drum rupture resulting.
- **DO NOT** reuse container if contamination is suspected.
- Open all containers with care.

Personal Protective Equipment advice is contained in Section 8 of the SDS.
SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

<table>
<thead>
<tr>
<th>Source</th>
<th>Ingredient</th>
<th>Material name</th>
<th>TWA</th>
<th>STEL</th>
<th>Peak</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>China Occupational Exposure Limits for Hazardous Agents in the Workplace</td>
<td>hexamethylene disocyanate</td>
<td>Hexamethylene disocyanate</td>
<td>0.03 mg/m³</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

EMERGENCY LIMITS

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Material name</th>
<th>TEEL-1</th>
<th>TEEL-2</th>
<th>TEEL-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>hexamethylene disocyanate</td>
<td>Hexamethylene disocyanate; (1,6-Diisocyanatohexane)</td>
<td>0.018 ppm</td>
<td>0.2 ppm</td>
<td>3 ppm</td>
</tr>
<tr>
<td>n-butyl acetate</td>
<td>Butyl acetate, n-</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>hexamethylene disocyanate polymer</td>
<td>Hexamethylene disocyanate polymer</td>
<td>7.8 mg/m³</td>
<td>86 mg/m³</td>
<td>510 mg/m³</td>
</tr>
</tbody>
</table>

MATERIAL DATA

for isocyanates:

- demographic, occupational and medical history and health advice
- completion of a standardised respiratory questionnaire
- physical examination of the respiratory system and skin
- standardised respiratory function tests such as FEV1, FVC and FEV1/FVC
- standardised respiratory function tests such as FEV1, FVC and FEV1/FVC

Various portable or stationary instruments are available for the continuous measurement of isocyanates in the air. All of them function on the principle of colourimetric evaluation of an indicator (exotherm) may occur.

- They may read incorrect at very high or very low humidity.
- They may not be acceptable for regulatory compliance.
- They may not be acceptable for regulatory compliance.
- They may not be acceptable for regulatory compliance.
- They may not be acceptable for regulatory compliance.

Air monitoring of isocyanates is carried out using portable or stationary instruments. All of them function on the principle of colourimetric evaluation of an indicator.
for 1,6-hexamethylene diisocyanate (HDI):
The toxicological action of HDI is similar to that of toluene diisocyanate and the TLV-TWA is analogous. In light of reported asthmatic/respiratory sensitisation-like responses in HDI exposed workers, individuals who may be hypersusceptible or otherwise unusually responsive may not be adequately protected at this limit.

Exposure controls

- All processes in which isocyanates are used should be enclosed wherever possible.
- Total enclosure, accompanied by good general ventilation, should be used to keep atmospheric concentrations below the relevant exposure standards.
- If total enclosure of the process is not feasible, local exhaust ventilation may be necessary. Local exhaust ventilation is essential where lower molecular weight isocyanates (such as TDI or HDI) is used or where isocyanate or polyurethane is sprayed.
- Where other isocyanates or pre-polymers are used and aerosol formation cannot occur, local exhaust ventilation may not be necessary if the atmospheric concentration can be kept below the relevant exposure standards.
- Where local exhaust ventilation is installed, exhaust vapours should not be vented to the exterior in such a manner as to create a hazard.

Appropriate engineering controls

- Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

- Process controls which involve changing the way a job activity or process is done to reduce the risk.
- Enclosure and/or isolation of emission sources which keeps a selected hazard “physically” away from the worker and ventilation that strategically “adds” and “removes” air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Personal protection

- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Eye and face protection

- The exact breakthrough time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where practical, removal of goggles should be carried out immediately after the removal of gloves, and the spray booth area must be isolated from unprotected personnel whilst spraying is in progress and until all spraying mist has cleared.

Skin protection

See Hand protection below

Hands/feet protection

- The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

- For esters:
 - Do NOT use natural rubber, butyl rubber, EPDM or polyethylene-containing materials.
- The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.
- The exact breakthrough time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.
- Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturizer is recommended.
- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:
 - frequency and duration of contact,
 - chemical resistance of glove material,
 - glove thickness and
 - dexterity
- Select gloves tested to a relevant standard (e.g. EN 374, US F793, AS/NZS 2161.1 or national equivalent).
 - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.1 or national equivalent) is recommended.
 - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to

Type of Contaminant:

<table>
<thead>
<tr>
<th>Type of Contaminant</th>
<th>Air Speed:</th>
</tr>
</thead>
<tbody>
<tr>
<td>direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)</td>
<td>1-2.5 m/s (200-500 f/min)</td>
</tr>
</tbody>
</table>

Within each range the appropriate value depends on:

<table>
<thead>
<tr>
<th>Lower end of the range</th>
<th>Upper end of the range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Room air currents minimal or favourable to capture</td>
<td>1: Disturbing room air currents</td>
</tr>
<tr>
<td>2: Contaminants of low toxicity or of nuisance value only</td>
<td>2: Contaminants of high toxicity</td>
</tr>
<tr>
<td>3: Intermittent, low production.</td>
<td>3: High production, heavy use</td>
</tr>
<tr>
<td>4: Large hood or large air mass in motion</td>
<td>4: Small hood-local control only</td>
</tr>
</tbody>
</table>

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min.) for extraction of solvents generated by spraying at a point 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.
EN 374, AS/NZS 2161.10.1 or national equivalent(s) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- Contaminated gloves should be replaced.

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers’ technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:
- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.
- Do NOT wear natural rubber (latex gloves).
- Isoyanate resistant materials include Teflon, Viton, nitrile rubber and some PVA gloves.
- Protective gloves and overalls should be worn as specified in the appropriate national standard.
- Contaminated garments should be removed promptly and should not be re-used until they have been decontaminated.
- NOTE: Natural rubber, neoprene, PVC can be affected by isocyanates.
- DO NOT use skin cream unless necessary and then use only minimum amount.
- Isoyanate vapour may be absorbed into skin cream and this increases hazard.

Body protection

All employees working with isocyanates must be informed of the hazards from exposure to the contaminant and the precautions necessary to prevent damage to their health. They should be made aware of the need to carry out their work so that as little contamination as possible is produced, and of the importance of the proper use of all safeguards against exposure to themselves and their fellow workers. Adequate training, both in the proper execution of the task and in the use of all associated engineering controls, as well as of any personal protective equipment, is essential.

Employees exposed to contamination hazards should be educated in the need for, and proper use of, facilities, clothing and equipment and thereby maintain a high standard of personal cleanliness. Special attention should be given to ensuring that all personnel understand instructions, especially newly recruited employees and those with local-language difficulties, where they are known.

Thermal hazards

Not Available

Recommended material(s)

<table>
<thead>
<tr>
<th>GLOVE SELECTION INDEX</th>
</tr>
</thead>
</table>

Glove selection is based on a modified presentation of the: "Forsberg Clothing Performance Index". The effect(s) of the following substance(s) are taken into account in the computer-generated selection: WANNATE® HB-75B

<table>
<thead>
<tr>
<th>Material</th>
<th>CPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUTYL</td>
<td>C</td>
</tr>
<tr>
<td>BUTYL/NEOPRENE</td>
<td>C</td>
</tr>
<tr>
<td>HYAPOLON</td>
<td>C</td>
</tr>
<tr>
<td>NATURAL RUBBER</td>
<td>C</td>
</tr>
<tr>
<td>NEOPRENE</td>
<td>C</td>
</tr>
<tr>
<td>NEOPRENE/NATURAL</td>
<td>C</td>
</tr>
<tr>
<td>NITRILE</td>
<td>C</td>
</tr>
<tr>
<td>NITRILE/PVC</td>
<td>C</td>
</tr>
<tr>
<td>PE</td>
<td>C</td>
</tr>
<tr>
<td>PE/EVALPE</td>
<td>C</td>
</tr>
<tr>
<td>PVA</td>
<td>C</td>
</tr>
<tr>
<td>PVC</td>
<td>C</td>
</tr>
<tr>
<td>SARANEX-23</td>
<td>C</td>
</tr>
<tr>
<td>TEFLOX</td>
<td>C</td>
</tr>
<tr>
<td>VITON/BUTYL</td>
<td>C</td>
</tr>
</tbody>
</table>

* CPI - Chemwatch Performance Index
A: Best Selection
B: Satisfactory; may degrade after 4 hours continuous immersion
C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation.

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Continued...
Appearance	Colorless to pale yellow
Physical state | Liquid
Relative density (Water = 1) | 1.07 g/cm³ (at 25 °C)
Odour | Solvent-like
Partition coefficient n-octanol / water | Not Available
Odour threshold | Not Available
Auto-ignition temperature (°C) | Not Available
pH (as supplied) | Not Available
Decomposition temperature | Not Available
Melting point / freezing point (°C) | Not Available
Viscosity (mPa.s) | 140 (at 25 °C)
Initial boiling point and boiling range (°C) | Not Available
Flash point (°C) | 35
Evaporation rate | Not Available
Explosive properties | Not Available
Flammability | Flammable.
Oxidising properties | Not Available
Upper Explosive Limit (%) | Not Available
Surface Tension (dyn/cm or mN/m) | Not Available
Lower Explosive Limit (%) | Not Available
Volatile Component (%vol) | Not Available
Solubility in water (g/L) | Immiscible
pH as a solution (1%) | Not Available
Vapour density (Air = 1) | Not Available

SECTION 10 STABILITY AND REACTIVITY

Reactivity | See section 7
Chemical stability | Unstable in the presence of incompatible materials.
Product is considered stable.
Hazardous polymerisation will not occur.
Possibility of hazardous reactions | See section 7
Conditions to avoid | See section 7
Incompatible materials | See section 7
Hazardous decomposition products | See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

<table>
<thead>
<tr>
<th>WANNATE® HB-75B</th>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>hexamethylene diisocyanate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOXICITY</td>
<td>Not Available</td>
<td></td>
</tr>
<tr>
<td>Dermal (rabbit) LD₅₀: 570 mg/kg[^1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inhalation (rat) LC₅₀: 6E-5 mg/L·hr[^2]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral (rat) LD₅₀: 738 mg/kg[^2]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRRTATION</td>
<td>Not Available</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n-butyl acetate</th>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dermal (rabbit) LD₅₀: 3200 mg/kg[^2]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inhalation (rat) LC₅₀: 1.802 mg/L·hr[^1]</td>
<td>Eye (rabbit): 20 mg (open) - SEVERE</td>
<td></td>
</tr>
<tr>
<td>Oral (rat) LD₅₀: 10768 mg/kg[^2]</td>
<td>Eye (rabbit): 20 mg/24h - moderate</td>
<td></td>
</tr>
<tr>
<td>Skin (rabbit): 500 mg/24h - moderate</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>hexamethylene diisocyanate polymer</th>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dermal (rabbit) LD₅₀: >5000 mg/kg[^2]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inhalation (rat) LC₅₀: 0.004625 mg/L·hr[^2]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral (rat) LD₅₀: >10000 mg/kg[^2]</td>
<td>Skin (rabbit): 500 mg - moderate</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. Value obtained from manufacturer’s SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

HEXAMETHYLENE
SECTION 12 ECOLOGICAL INFORMATION

Toxicity

<table>
<thead>
<tr>
<th>Legend:</th>
<th>– Data available but does not fit the criteria for classification</th>
<th>✓ – Data available to make classification</th>
<th>❌ – Data Not Available to make classification</th>
</tr>
</thead>
</table>

DIISOCYANATE

N-BUTYL ACETATE

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

HEXAMETHYLENE DIISOCYANATE POLYMER

The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

* Bayer SDS ** Ardx SDS

HEXAMETHYLENE DIISOCYANATE & HEXAMETHYLENE DIISOCYANATE POLYMER

The following information refers to contact allergens as a group and may not be specific to this product.

Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions which are mostly the result of reactions of the allergens with specific antibodies of the IgE class and belong in their reaction rates to the manifestation of the immediate type. In addition to the allergen-specific potential for causing respiratory sensitisation, the amount of the allergen, the exposure period and the genetically determined disposition of the exposed person are likely to be decisive.

Factors which increase the sensitivity of the mucosa may play a role in predisposing a person to allergy. They may be genetically determined or acquired, for example, during infections or exposure to irritant substances. Immunologically the low molecular weight substances become complete allergens in the organism either by binding to peptides or proteins (haptens) or after metabolism (prohaptens).

HEXAMETHYLENE DIISOCYANATE & HEXAMETHYLENE DIISOCYANATE POLYMER

Particular attention is drawn to so-called atopic diathesis which is characterised by an increased susceptibility to allergic rhinitis, allergic bronchial asthma and atopic eczema (neurodermatitis) which is associated with increased IgE synthesis.

HEXAMETHYLENE DIISOCYANATE & HEXAMETHYLENE DIISOCYANATE POLYMER

Exogenous allergic alveolitis is induced essentially by allergen specific immune-complexes of the IgG type; cell-mediated reactions (T lymphocytes) may be involved. Such allergy is of the delayed type with onset up to four hours following exposure.

HEXAMETHYLENE DIISOCYANATE & HEXAMETHYLENE DIISOCYANATE POLYMER

Isocyanate vapours/mists are irritating to the upper respiratory tract and lungs; the response may be severe enough to produce bronchitis with wheezing, gasping and severe distress, even sudden loss of consciousness, and pulmonary oedema. Possible neurological symptoms arising from isocyanate exposure include headache, insomnia, euphoria, ataxia, anxiety, nervousness, depression and paranoia. Gastrointestinal disturbances are characterised by nausea and vomiting. Pulmonary sensitisation may produce asthmatic reactions ranging from minor breathing difficulties to severe allergic attacks; this may occur following a single acute exposure or may develop without warning after a period of tolerance. A respiratory response may occur following minor skin contact. Skin sensitisation is possible and may result in allergic dermatitis responses including rash, itching, rashes and swelling of extremities. Isocyanate-containing vapours/mists may cause inflammation of eyes and nasal passages. Onset of symptoms may be immediate or delayed for several hours after exposure. Sensitised people can react to very low levels of airborne isocyanates. Unprotected or sensitised persons should not be allowed to work in situations allowing exposure to this material.

HEXAMETHYLENE DIISOCYANATE & HEXAMETHYLENE DIISOCYANATE POLYMER

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling of the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

DIISOCYANATE

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compounds. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an intolent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

1,6-Hexamethylene diisocyanate:

Exposures to HDI are often associated with exposures to its prepolymers, especially to a trimeric biuret prepolymer of HDI (HDI-BT), which is widely used as a hardener in automobile and airplane paints, and which typically contains 0.5-1% unreacted HDI. There is evidence that diisocyanate prepolymers may induce asthma at the same or greater frequency as the monomers; therefore, there is a need to assess the potential for human exposure to prepolymeric HDI as well as monomeric HDI.

1,6-Hexamethylene diisocyanate is corrosive to the skin and the eye.

1,6-Hexamethylene diisocyanate was found to induce dermal and respiratory sensitization in animals and humans. There is no threshold known for this effect.

Inhalation studies with repeated exposures to 1,6-hexamethylene diisocyanate vapor show that the respiratory tract is the target with 1,6-hexamethylene diisocyanate showing primarily upper respiratory tract lesions (nasal cavity). 1,6-Hexamethylene diisocyanate did not show a neurotoxic effect in a combined reproduction/developmental/neurotoxicity study. Life-time inhalation exposure to rats revealed a progression of non-neoplastic respiratory tract lesions, primarily to the nasal cavity, and represented the sequelas of non-specific irritation. Based on the presence of only reversible tissue responses to irritation at the low concentration of 0.005 ppm, this concentration was a NOAEL. No carcinogenic potential in rats was observed after life-time inhalation.

1,6-Hexamethylene diisocyanate showed no mutagenic activity in vitro in bacterial and in mammalian cell test systems.

1,6-Hexamethylene diisocyanate showed no clastogenic activity in vivo.

1,6-Hexamethylene diisocyanate has no effect on fertility and post-natal viability through post-natal day 4 in the rat after inhalation up to 0.29 ppm. The overall NOEL was 0.005 ppm.

Inhalation of 1,6-hexamethylene diisocyanate during the pregnancy of rats produced maternal effects (nasal turbinates histopathology) at concentrations ≥ 0.052 ppm. No developmental toxicity was observed up to 0.038 ppm.

N-BUTYL ACETATE

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

DIISOCYANATE & DIISOCYANATE POLYMER

Skin Irritation/Corrosion

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

DIISOCYANATE & DIISOCYANATE POLYMER

Serious Eye Damage/Inflammation

The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

DIISOCYANATE & DIISOCYANATE POLYMER

Respiratory or Skin sensitisation

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling of the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

DIISOCYANATE & DIISOCYANATE POLYMER

Acute Toxicity

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

DIISOCYANATE & DIISOCYANATE POLYMER

Skin Irritation/Corrosion

The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

DIISOCYANATE & DIISOCYANATE POLYMER

Serious Eye Damage/Inflammation

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling of the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.
Environmental Fate:

AQUATIC FATE: An estimated Koc value indicates that n-butyl acetate is not expected to adsorb to suspended solids and sediment in water. Butyl acetate is expected to volatilise from water surfaces based on a Henry's Law constant of 2.8x10^-4 atm-cu m/mol. Estimated half-lives for a model river and model lake are 7 and 127, hours respectively. An estimated BCF value of 10 based on the log Kow, suggests that bioconcentration in aquatic organisms is low. Using a filtered sewage seed, 5-day and 20-day theoretical BODs of 58 % and 83 % were measured in freshwater treatment this process is not expected to be significant.

ATMOSPHERIC FATE: According to a model of gas/particle partitioning of semivolatile organic compounds in the atmosphere, n-butyl acetate, which has a vapour pressure of 11.5 mm Hg at 25 deg C, is expected to exist solely as a vapor in the ambient atmosphere. Vapor-phase n-butyl acetate is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be about 4 days.

Persistence and degradability

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>hexamethylene diisocyanate</td>
<td>LOW</td>
<td>LOW</td>
</tr>
<tr>
<td>n-butyl acetate</td>
<td>LOW</td>
<td>LOW</td>
</tr>
<tr>
<td>hexamethylene diisocyanate polymer</td>
<td>HIGH</td>
<td>HIGH</td>
</tr>
</tbody>
</table>

Legend:

- Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

For polyisocyanates:

Polyisocyanates are not readily biodegradable. However, due to other elimination mechanisms (hydrolysis, adsorption), long retention times in water are not to be expected. The resulting polyurea is more or less inert and, due to its molecular size, not bioavailable. Within the limits of water solubility, polyisocyanates have a low to moderate toxicity for aquatic organisms. Hydrolysis would represents the primary fate mechanism for the majority of the commercial isocyanate monomers, but, is tempered somewhat by the lack of water solubility. In the absence of hydrolysis, sorption to solids (e.g., sludge and sediments) will be the primary mechanism of removal. Biodegradation is minimal for most compounds and volatilisation is negligible. Atmospheric degradation is not expected with removal from air occurring by washout or dry deposition. Volatilisation from surface waters (e.g., lakes and rivers) is expected to take years. In wastewater treatment this process is not expected to be significant.

Review of the estimated properties of the isocyanates suggest that sorption is the primary removal mechanism in the environment and in wastewater treatment in the absence of significant hydrolysis. Sorption to solids in wastewater treatment is considered strong to very strong for most compounds. Sorption to sediments and soils in the ambient environment is very strong in most instances. Migration to groundwater and surface waters is not expected due to sorption or hydrolysis.

Hydrolysis of the N=C=O will occur in less than hours in most instances and within minutes for more than 90% of the commercial isocyanates. However, the low to very low solubility of these substances will generally lessen the effectiveness of hydrolysis as a fate pathway. But hydrolysis should be considered one of the two major fate processes for the isocyanates.

Aerobic and/or anaerobic biodegradation of the isocyanates is not expected to occur at significant levels. Most of the substances take several months to degrade. Degradation of the hydrolysis products will occur at varying rates depending on the moity formed.

For n-butyl acetate:

- Half-life (hr) air: 144
- Half-life (hr) H2O surface water: 178-27156
- Henry's atm m3/mol: 3.20E-04
- BOD 5 if unstated: 0.15-1.02,7%
- COD: 78%
- THOD: 2.207
- BCF: 4.14

Environmental Fate:

- TERRESTRIAL FATE: An estimated Koc value of 200 determined from a measured log Kow of 1.78 indicates that n-butyl acetate is expected to have moderate mobility in soil. Volatilisation of n-butyl acetate is expected from moist soil surfaces given its Henry's Law constant of 2.8x10^-4 atm-cu m/mole. Volatilisation from dry soil surfaces is expected based on a measured vapor pressure of 11.5 mm Hg. Using a standard BOD dilution technique and a sewage inoculum, theoretical BODs of 56 % to 86 % were observed during 5-20 day incubation periods, which suggests that n-butyl acetate may biodegrade in soil.

Legend:

- AQUATIC FATE: An estimated Koc value indicates that n-butyl acetate is expected to adsorb to suspended solids and sediment in water. Butyl acetate is expected to volatilise from water surfaces based on a Henry's Law constant of 2.8x10^-4 atm-cu m/mole. Estimated half-lives for a model river and model lake are 7 and 127, hours respectively. An estimated BCF value of 10 based on the log Kow, suggests that bioconcentration in aquatic organisms is low. Using a fitted sewage seed, 5-day and 20-day theoretical BODs of 56 % and 63 % were measured in freshwater dilution tests; 5-day and 20-day theoretical BODs of 40 % and 61 % were measured in salt water. A 5-day theoretical BOD of 56.8 % and 51.8 % were measured for n-butyl acetate in distilled water and seawater, respectively. Hydrolysis may be an important environmental fate for this compound based upon experimentally determined hydrolysis half-lives of 114 and 11 days at pH 8 and 9 respectively.

- ATMOSPHERIC FATE: According to a model of gas/particle partitioning of semivolatile organic compounds in the atmosphere, n-butyl acetate, which has a vapour pressure of 11.5 mm Hg at 25 deg C, is expected to exist solely as a vapor in the ambient atmosphere. Vapor-phase n-butyl acetate is degraded in the atmosphere by reaction with photochimically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be about 4 days.

Environmental fate:

- Fish LC50 (96 h, 25 C): island silverside (Menidia beryllina) 185 ppm (static bioassay in synthetic seawater, mild aeration applied after 24 h); bluegill sunfish (Lepomis macrochirus) 100 ppm (static bioassay in fresh water, mild aeration applied after 24 h)
- Fish EC50 (96 h): fathead minnow (Pimephales promelas) 18 mg/L (affected fish lost equilibrium prior to death)
- Daphnia LC50 (48 h): 44 ppm
- Algal LC50 (96 h): Scenedesmus 320 ppm

DO NOT discharge into sewer or waterways.
Bioaccumulative potential

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Bioaccumulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>hexamethylene diisocyanate</td>
<td>LOW (LogKOW = 3.1956)</td>
</tr>
<tr>
<td>n-butyl acetate</td>
<td>LOW (BCF = 14)</td>
</tr>
<tr>
<td>hexamethylene diisocyanate polymer</td>
<td>LOW (LogKOW = 7.5796)</td>
</tr>
</tbody>
</table>

Mobility in soil

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>hexamethylene diisocyanate</td>
<td>LOW (KOC = 5864)</td>
</tr>
<tr>
<td>n-butyl acetate</td>
<td>LOW (KOC = 20.86)</td>
</tr>
<tr>
<td>hexamethylene diisocyanate polymer</td>
<td>LOW (KOC = 18560000)</td>
</tr>
</tbody>
</table>

Other adverse effects

No data available

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

- Containers may still present a chemical hazard/danger when empty.
- Return to supplier for reuse/recycling if possible.
- Otherwise:
 - If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
 - Where possible retain label warnings and SDS and observe all notices pertaining to the product.
- Legislation addressing waste disposal requirements may differ by country, state and/or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.
- A Hierarchy of Controls seems to be common - the user should investigate:
 - Reduction
 - Reuse
 - Recycling
 - Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type.

Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- **DO NOT** allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- **DO NOT** recycle spilt material.
- Consult State Land Waste Management Authority for disposal.
- Neutralise spill material carefully and decontaminate empty containers and spill residues with 10% ammonia solution plus detergent or a proprietary decontaminant prior to disposal.
- **DO NOT** seal or stopper drums being decontaminated as CO2 gas is generated and may pressurise containers.
- Puncture containers to prevent re-use.
- Bury or incinerate residues at an approved site.

Contaminated packing materials:

Refer to section above

Precautions for Transport:

Refer to section above

SECTION 14 TRANSPORT INFORMATION

Labels Required

- Marine Pollutant: NO

Land transport (UN)

<table>
<thead>
<tr>
<th>UN number</th>
<th>1866</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN proper shipping name</td>
<td>RESIN SOLUTION, flammable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transport hazard class(es)</th>
<th>Class 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subrisk</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Packing group</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental hazard</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>
Special precautions for user

<table>
<thead>
<tr>
<th>Special provisions</th>
<th>Limited quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>223</td>
<td>5 L</td>
</tr>
</tbody>
</table>

Air transport (ICAO-IATA / DGR)

<table>
<thead>
<tr>
<th>UN number</th>
<th>1866</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN proper shipping name</td>
<td>Resin solution flammable</td>
</tr>
<tr>
<td>Transport hazard class(es)</td>
<td>ICAO/IATA Class 3</td>
</tr>
<tr>
<td></td>
<td>ICAO / IATA Subrisk Not Applicable</td>
</tr>
<tr>
<td>ERG Code</td>
<td>3L</td>
</tr>
<tr>
<td>Packing group</td>
<td>III</td>
</tr>
<tr>
<td>Environmental hazard</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Special precautions for user</td>
<td>Special provisions A3</td>
</tr>
<tr>
<td></td>
<td>Cargo Only Packing Instructions 366</td>
</tr>
<tr>
<td></td>
<td>Cargo Only Maximum Qty / Pack 220 L</td>
</tr>
<tr>
<td></td>
<td>Passenger and Cargo Packing Instructions 355</td>
</tr>
<tr>
<td></td>
<td>Passenger and Cargo Maximum Qty / Pack 60 L</td>
</tr>
<tr>
<td></td>
<td>Passenger and Cargo Limited Quantity Packing Instructions Y344</td>
</tr>
<tr>
<td></td>
<td>Passenger and Cargo Limited Maximum Qty / Pack 10 L</td>
</tr>
</tbody>
</table>

Sea transport (IMDG-Code / GGVSee)

<table>
<thead>
<tr>
<th>UN number</th>
<th>1866</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN proper shipping name</td>
<td>RESIN SOLUTION flammable</td>
</tr>
<tr>
<td>Transport hazard class(es)</td>
<td>IMDG Class 3</td>
</tr>
<tr>
<td></td>
<td>IMDG Subrisk Not Applicable</td>
</tr>
<tr>
<td>Packing group</td>
<td>III</td>
</tr>
<tr>
<td>Environmental hazard</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Special precautions for user</td>
<td>EMS Number F-E, S-E</td>
</tr>
<tr>
<td></td>
<td>Special provisions 223 955</td>
</tr>
<tr>
<td></td>
<td>Limited Quantities 5 L</td>
</tr>
</tbody>
</table>

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

Precautions for Transport

Transportation precautions:
- Documentation covering all dangerous goods carried on the vehicle
- The transport unit must be placarded and marked in accordance with relevant transporting requirements.
- Personal protective equipment must be in sufficient quantities and suitable for use by the driver of the vehicle and where required for escape purposes, any other persons travelling in the vehicle.
- Vehicles transporting dangerous goods need to be equipped with sufficient and adequate fire protection systems and emergency equipment to handle spillages.
- Use flameproof or intrinsically safe electrical equipment
- Ensure all ignition sources are identified and eliminated or reduced where there is any likelihood of an incident due to a spill or release of fire risk dangerous goods.
- Likely to be incompatible however refer to SDS for further details:
 - Class 2.1, 2.2, 2.2 (with subrisk 5.1), 2.3, 4.1, 4.2, 4.3, 5.1, 5.2, 6.1
- If applicable, use appropriate types of segregation devices to isolate incompatible dangerous goods:
- Incompatible for transport with foodstuffs (including stock feed).
- Routes for road vehicles should avoid heavily populated or environmentally sensitive areas, congested crossings or a concentration of people
- Vehicle exhaust or hot engine components must be shielded to ensure cargo temperatures cannot be raised.

Suitable Containers

See section 7

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

| HEXAMETHYLENE DISOCYANATE(822-06-0) IS FOUND ON THE FOLLOWING REGULATORY LISTS |
| China Inventory of Existing Chemical Substances | China Inventory of Hazardous Chemicals (Chinese) | China Occupational Exposure Limits for Hazardous Agents in the Workplace |
N-BUTYL ACETATE (123-86-4) IS FOUND ON THE FOLLOWING REGULATORY LISTS

<table>
<thead>
<tr>
<th>National Inventory</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>Y</td>
</tr>
<tr>
<td>China</td>
<td>Y</td>
</tr>
<tr>
<td>Japan</td>
<td>Y</td>
</tr>
<tr>
<td>Korea</td>
<td>Y</td>
</tr>
<tr>
<td>New Zealand</td>
<td>Y</td>
</tr>
<tr>
<td>Philippines</td>
<td>Y</td>
</tr>
<tr>
<td>USA</td>
<td>Y</td>
</tr>
</tbody>
</table>

Legend:
Y = All ingredients are on the inventory
N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing (see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Ingredients with multiple cas numbers

<table>
<thead>
<tr>
<th>Name</th>
<th>CAS No</th>
</tr>
</thead>
<tbody>
<tr>
<td>hexamethylene diisocyanate polymer</td>
<td>28182-81-2, 52200-31-0, 1192214-73-5</td>
</tr>
</tbody>
</table>

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC — TWA: Permissible Concentration - Time Weighted Average
PC — STEL: Permissible Concentration - Short Term Exposure Limit
IARC: International Agency for Research on Cancer
ACGIH: American Conference of Governmental Industrial Hygienists
STEL: Short Term Exposure Limit
TEEL: Temporary Emergency Exposure Limit
IDLH: Immediately Dangerous to Life or Health Concentrations
OSF: Odour Safety Factor
NOAEL: No Observed Adverse Effect Level
LOAEL: Lowest Observed Adverse Effect Level
TLV: Threshold Limit Value
LOD: Limit Of Detection
OTV: Odour Threshold Value
BCF: BioConcentration Factors
BEI: Biological Exposure Index

Disclaimer

The information in the SDS applies only for the specified product and does not include mixtures of this product with other substances and mixtures. The SDS provides product safety information for personnel trained to use this product only.

Powered by AuthorITe, from Chemwatch.