SAFETY DATA SHEET

WANAMINE™ IPDA

WANHUA CHEMICAL GROUP Co., LTD.

Chemwatch Hazard Alert Code: 3

Version No: 3.3

Safety Data Sheet - Authored according to GB/T16483(2008) and GB/T17519(2013)

Issue Date: 30/09/2017
Print Date: 30/09/2017

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

<table>
<thead>
<tr>
<th>Product name</th>
<th>WANAMINE™ IPDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Name</td>
<td>isophorone diamine</td>
</tr>
<tr>
<td>Chemical English Name</td>
<td>isophorone diamine</td>
</tr>
<tr>
<td>Synonyms</td>
<td>3-AMINOMETHYL-3, 5, 5-TRIMETHYL-CYCLOHEXANEDIAMINE</td>
</tr>
<tr>
<td>Proper shipping name</td>
<td>ISOPHORONEDIAMINE</td>
</tr>
<tr>
<td>Other means of identification</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Relevant identified uses of the substance or mixture and uses advised against

| Relevant identified uses | Curing agent in epoxies, coating, polyamine resins, raw materials for IPDI. |

Details of the supplier of the safety data sheet

Registered company name	WANHUA CHEMICAL GROUP Co., LTD.
Address	No.17 Tianshan Road, Yantai, Shandong,
Telephone	0535-3031150
Fax	0535-388222-1150
Website	https://www.whchem.com
Email	whsds@whchem.com

Emergency telephone number

Association / Organisation	Not Available
Emergency telephone numbers	+86 532-83889090
Other emergency telephone numbers	+86 535-8203123

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

| SUMMARY OF HAZARD IN AN EMERGENCY SITUATION |
| Liquid. |
| Corrosive. |
| Alkaline. Combustible. |
| Harmful in contact with skin. |
| Harmful if swallowed. |
| Causes burns. |
| Risk of serious damage to eyes. |
| May cause SENSITISATION by skin contact. |

| Classification [1] | Acute Toxicity (Oral) Category 4, Acute Toxicity (Dermal) Category 4, Skin Corrosion/Irritation Category 1C, Skin Sensitizer Category 1, Serious Eye Damage Category 1, Chronic Aquatic Hazard Category 3 |

Label elements

| Hazard pictogram(s) | |

Continued...
Signal Word DANGER

Hazard statement(s)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>H302</td>
<td>Harmful if swallowed.</td>
</tr>
<tr>
<td>H312</td>
<td>Harmful in contact with skin.</td>
</tr>
<tr>
<td>H314</td>
<td>Causes severe skin burns and eye damage.</td>
</tr>
<tr>
<td>H317</td>
<td>May cause an allergic skin reaction.</td>
</tr>
<tr>
<td>H412</td>
<td>Harmful to aquatic life with long lasting effects.</td>
</tr>
</tbody>
</table>

Precautionary statement(s)

Prevention

<table>
<thead>
<tr>
<th>Code</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>P260</td>
<td>Do not breathe dust/fume/gas/mist/vapours/spray.</td>
</tr>
<tr>
<td>P280</td>
<td>Wear protective gloves/protective clothing/eye protection/face protection.</td>
</tr>
<tr>
<td>P270</td>
<td>Do not eat, drink or smoke when using this product.</td>
</tr>
<tr>
<td>P273</td>
<td>Avoid release to the environment.</td>
</tr>
<tr>
<td>P272</td>
<td>Contaminated work clothing should not be allowed out of the workplace.</td>
</tr>
</tbody>
</table>

Response

<table>
<thead>
<tr>
<th>Code</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>P301+P330+P331</td>
<td>IF SWALLOWED: Rinse mouth. Do NOT induce vomiting.</td>
</tr>
<tr>
<td>P303+P361+P353</td>
<td>IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water/shower.</td>
</tr>
<tr>
<td>P305+P351+P338</td>
<td>IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.</td>
</tr>
<tr>
<td>P310</td>
<td>Immediately call a POISON CENTER/doctor/physician/first aider.</td>
</tr>
<tr>
<td>P302+P352</td>
<td>IF ON SKIN: Wash with plenty of water and soap.</td>
</tr>
<tr>
<td>P303</td>
<td>Wash contaminated clothing before reuse.</td>
</tr>
<tr>
<td>P333+P313</td>
<td>If skin irritation or rash occurs: Get medical advice/attention.</td>
</tr>
<tr>
<td>P362+P364</td>
<td>Take off contaminated clothing and wash it before reuse.</td>
</tr>
<tr>
<td>P301+P312</td>
<td>IF SWALLOWED: Call a POISON CENTER/doctor/physician/first aider if you feel unwell.</td>
</tr>
<tr>
<td>P304+P340</td>
<td>IF INHALED: Remove person to fresh air and keep comfortable for breathing.</td>
</tr>
</tbody>
</table>

Storage

<table>
<thead>
<tr>
<th>Code</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>P405</td>
<td>Store locked up.</td>
</tr>
</tbody>
</table>

Disposal

<table>
<thead>
<tr>
<th>Code</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>P501</td>
<td>Dispose of contents/container in accordance with local regulations.</td>
</tr>
</tbody>
</table>

Physical and Chemical Hazard

- Liquid.
- Corrosive.
- Alkaline.
- Combustible.
- Toxic smoke/fumes in a fire.
- Attacks metals to liberate hydrogen.

Health Hazards

Inhaled

Inhalation of amine vapours may cause irritation of the mucous membranes of the nose and throat and lung irritation with respiratory distress and cough. Single exposures to near lethal concentrations and repeated exposures to sublethal concentrations produce tracheitis, bronchitis, pneumonitis and pulmonary oedema. Aliphatic and alicyclic amines are generally well absorbed from the respiratory tract. Systemic effects include headache, nausea, faintness and anxiety. These effects are thought to be transient and are probably related to the pharmacodynamic action of the amines. Histamine release by aliphatic amines may produce bronchoconstriction and wheezing. Inhalation of alkaline corrosives may produce irritation of the respiratory tract with coughing, choking, pain and mucous membrane damage. Pulmonary oedema may develop in more severe cases; this may be immediate or in most cases following a latent period of 5-72 hours. Symptoms may include a tightening in the chest, dyspnoea, frothy sputum, cyanosis and dizziness. Findings may include hypotension, a weak and rapid pulse and moist rales.

Ingestion

Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual. Ingestion of amine epoxy-curing agents (hardeners) may cause severe abdominal pain, nausea, vomiting or diarrhoea. The vomitus may contain blood and mucus. If death does not occur within 24 hours there may be an improvement in the patients condition for 2-4 days only to be followed by the sudden onset of abdominal pain, board-like abdominal rigidity or hypo-tension; this indicates that delayed gastric or oesophageal corrosive damage has occurred.
Ingestion of alkaline corrosives may produce immediate pain, and circumoral burns. Mucous membrane corrosive damage is characterised by a white appearance and soapy feel; this may then become brown, oedematous and ulcerated. Profuse salivation with an inability to swallow or speak may also result. Even where there is limited or no evidence of chemical burns, both the oesophagus and stomach may experience a burning pain; vomiting and diarrhoea may follow. The vomitus may be thick and may be slimy (mucous) and may eventually contain blood and shreds of mucosa. Epiglottal oedema may result in respiratory distress and asphyxia. Marked hypotension is symptomatic of shock; a weak and rapid pulse, shallow respiration and clammy skin may also be evident. Circulatory collapse may occur and, if uncorrected, may produce renal failure. Severe exposures may result in oesophaegael or gastric perforation accompanied by mediastinitis, subternal pain, peritonitis, abdominal rigidity and fever. Although oesophageal, gastric or pyloric stricture may be evident initially, these may occur after weeks or even months and years. Death may be quick and results from asphyxia, circulatory collapse or aspiration of even minute amounts. Death may also be delayed as a result of perforation, pneumonia or the effects of stricture formation.

Aliphatic and alicyclic amines are generally well absorbed from the gut. Corrosive action may cause tissue damage throughout the gastrointestinal tract. Detoxification is thought to occur in the liver, kidney and intestinal mucosa with the enzymes, monoamine oxidase and diamine oxidase (histaminase) having a significant role.

Skin Contact

Skin contact with the material may be harmful; systemic effects may result following absorption.

The material is not thought to be a skin irritant (i.e. is unlikely to produce irritant dermatitis as described in EC Directives using animal models). Temporary discomfort, however, may result from prolonged dermal exposures. Good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.

Amine epoxy-curing agents (hardeners) may produce primary skin irritation and sensitisation dermatitis in predisposed individuals. Cutaneous reactions include erythema, intolerable itching and severe facial swelling. Blistering, withweeping of serious fluid, and crustung and scaling may also occur. Virtually all of the liquid amine curing agents can cause sensitisation or allergic skin reactions. Individuals exhibiting “amine dermatitis” may experience a dramatic reaction upon re-exposure to minute quantities. Highly sensitive persons may even react to cured resins containing trace amounts of unreacted amine hardener. Minute quantities of air-borne amine may precipitate intense dermatological symptoms in sensitive individuals. Prolonged or repeated exposure may produce tissue necrosis.

NOTE: Susceptibility to this sensitisation will vary from person to person. Also, allergic dermatitis may not appear until after several days or weeks of contact. However, once sensitisation has occurred, exposure of the skin to even very small amounts of the material may cause erythema (redness) and oedema (swelling) at the site. Thus, all skin contact with any epoxy curing agent should be avoided.

Skin contact with alkaline corrosives may produce severe pain and burns; brownish stains may develop. The corroded area may be soft, gelatinous and necrotic; tissue destruction may be deep.

Open cuts, abraded or irritated skin should not be exposed to this material. Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

When applied to the eye(s) of animals, the material produces severe ocular lesions which are present twenty-four hours or more after instillation.

Direct contact with alkaline corrosives may produce pain and burns. Oedema, destruction of the epithelium, corneal opacification and iritis may occur. In less severe cases these symptoms tend to resolve. In severe injuries the full extent of the damage may not be immediately apparent with late complications comprising a persistent oedema, vascularisation and corneal scarring, permanent opacity, staphyloma, cataract, symblepharon and loss of sight.

The vapour when concentrated has pronounced eye irritation effects and this gives some warning of high vapour concentrations. If eye irritation occurs seek to reduce exposure with available control measures, or evacuate area.

Vapours of volatile amines cause eye irritation with lachrymation, conjunctivitis and minor transient corneal oedema which results in “halos” around lights (glauopsia, “blue haze”, or “blue-grey haze”). Vision may become misty and halos may appear several hours after workers are exposed to the substance.

This effect generally disappears spontaneously within a few hours of the end of exposure, and does not produce physiological after-effects. However oedema of the corneal epithelium, which is primarily responsible for vision disturbances, may take more than one or more days to clear, depending on the severity of exposure. Photophobia and discomfort from the roughness of the corneal surface also may occur after greater exposures. Although no detriment to the eye occurs as such, glauopsia predisposes an affected individual to physical accidents and reduces the ability to undertake skilled tasks such as driving a vehicle.

Direct local contact with the liquid may produce eye damage which may be permanent in the case of the lower molecular weight species.

Environmental Hazards

See Section 12

Other hazards

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

<table>
<thead>
<tr>
<th>CAS No</th>
<th>% [weight]</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>2855-13-2</td>
<td>>99.7</td>
<td>isophorone diamine</td>
</tr>
</tbody>
</table>

SECTION 4 FIRST AID MEASURES

See section below for composition of Mixtures

(Continued...)
Description of first aid measures

Eye Contact
If this product comes in contact with the eyes:
- Immediately hold eyelids apart and flush the eye continuously with running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes.
- Transport to hospital or doctor without delay.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Inhalation
- If fumes, aerosols or combustion products are inhaled remove from contaminated area.
- Other measures are usually unnecessary.
- Inhalation of vapours or aerosols (mists, fumes) may cause lung oedema.
- Corrosive substances may cause lung damage (e.g. lung oedema, fluid in the lungs).
- As this reaction may be delayed up to 24 hours after exposure, affected individuals need complete rest (preferably in semi-recumbent posture) and must be kept under medical observation even if no symptoms are (yet) manifested.
- Before any such manifestation, the administration of a spray containing a dexamethasone derivative or beclomethasone derivative may be considered.

This must definitely be left to a doctor or person authorised by him/her.

Ingestion
- **IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY.**
- For advice, contact a Poisons Information Centre or a doctor.
- Urgent hospital treatment is likely to be needed.
- In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient’s condition.
- If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the SDS should be provided. Further action will be the responsibility of the medical specialist.
- If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the SDS.

Where medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise:
- **INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS.** Lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.

NOTE: Wear a protective glove when inducing vomiting by mechanical means.

Indication of any immediate medical attention and special treatment needed

For acute or short-term repeated exposures to highly alkaline materials:
- Respiratory stress is uncommon but present occasionally because of soft tissue edema.
- Unless endotracheal intubation can be accomplished under direct vision, tracheotomy or tracheostomy may be necessary.
- The presence of shock suggests perforation and mandates an intravenous line and fluid administration.
- Damage due to alkaline corrosives occurs by liquefaction necrosis whereby the saponification of fats and solubilisation of proteins allow deep penetration into the tissue. Alkalis continue to cause damage after exposure.

INGESTION:
- Milk and water are the preferred diluents
- No more than 2 glasses of water should be given to an adult.
- * Catharsis and emesis are absolutely contra-indicated.
- * Activated charcoal does not absorb alkali.
- * Gastric lavage should not be used.
- Supportive care involves the following:
 - Withhold oral feedings initially.
 - If endoscopy confirms transmucosal injury start steroids only within the first 48 hours.
 - Carefully evaluate the amount of tissue necrosis before assessing the need for surgical intervention.
 - Patients should be instructed to seek medical attention whenever they develop difficulty in swallowing (dysphagia).

SKIN AND EYE:
- Injury should be irrigated for 20-30 minutes.
- Eye injuries require saline. [Ellenhorn & Barceloux: Medical Toxicology]

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media
- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog - Large fires only.

Special hazards arising from the substrate or mixture
- **Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result**

Advice for firefighters

Fire Fighting
Fire/Explosion Hazard
- Combustible.
- Slight fire hazard when exposed to heat or flame.
- Heating may cause expansion or decomposition leading to violent rupture of containers.
- On combustion, may emit toxic fumes of carbon monoxide (CO).
- May emit acrid smoke.
- Mists containing combustible materials may be explosive.

Combustion products include:
- carbon dioxide (CO₂)
- nitrogen oxides (NOₓ)
- other pyrolysis products typical of burning organic material.

Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions. May emit corrosive fumes.

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures
See section 8

Measures for Preventing Secondary Contamination
Refer to section above

Environmental precautions
See section 12

Methods and material for containment and cleaning up

Minor Spills
- Drains for storage or use areas should have retention basins for pH adjustments and dilution of spills before discharge or disposal of material.
- Check regularly for spills and leaks.
- Clean up all spills immediately.
- Avoid breathing vapours and contact with skin and eyes.
- Control personal contact with the substance, by using protective equipment.
- Contain and absorb spill with sand, earth, inert material or vermiculite.
- Wipe up.
- Place in a suitable, labelled container for waste disposal.

Major Spills
- Clear area of personnel and move upward.
- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- Stop leak if safe to do so.
- Contain spill with sand, earth or vermiculite.
- Collect recoverable product into labelled containers for recycling.
- Neutralise/decontaminate residue (see Section 13 for specific agent).
- Collect solid residues and seal in labelled drums for disposal.
- Wash area and prevent runoff into drains.
- After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.
- If contamination of drains or waterways occurs, advise emergency services.

Chemical Class: amines, alkyl
For release onto land: recommended sorbents listed in order of priority.

<table>
<thead>
<tr>
<th>SORBENT TYPE</th>
<th>RANK</th>
<th>APPLICATION</th>
<th>COLLECTION</th>
<th>LIMITATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAND SPILL - SMALL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cross-linked polymer - particulate</td>
<td>1</td>
<td>shovel</td>
<td>shovel</td>
<td>R, W, SS</td>
</tr>
<tr>
<td>cross-linked polymer - pillow</td>
<td>1</td>
<td>throw</td>
<td>pitchfork</td>
<td>R,DGC, RT</td>
</tr>
<tr>
<td>sorbent clay - particulate</td>
<td>2</td>
<td>shovel</td>
<td>shovel</td>
<td>R, I, P</td>
</tr>
<tr>
<td>wood fiber - pillow</td>
<td>3</td>
<td>throw</td>
<td>pitchfork</td>
<td>R, P, DGC, RT</td>
</tr>
<tr>
<td>treated wood fibre - pillow</td>
<td>3</td>
<td>throw</td>
<td>pitchfork</td>
<td>DGC, RT</td>
</tr>
<tr>
<td>foamed glass - pillow</td>
<td>4</td>
<td>throw</td>
<td>pitchfork</td>
<td>R, P, DGC, RT</td>
</tr>
<tr>
<td>LAND SPILL - MEDIUM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cross-linked polymer - particulate</td>
<td>1</td>
<td>blower</td>
<td>skiploader</td>
<td>R, W, SS</td>
</tr>
<tr>
<td>cross-linked polymer - pillow</td>
<td>2</td>
<td>throw</td>
<td>skiploader</td>
<td>R, DGC, RT</td>
</tr>
<tr>
<td>sorbent clay - particulate</td>
<td>3</td>
<td>blower</td>
<td>skiploader</td>
<td>R, I, P</td>
</tr>
<tr>
<td>polypropylene - particulate</td>
<td>3</td>
<td>blower</td>
<td>skiploader</td>
<td>W, SS, DGC</td>
</tr>
<tr>
<td>expanded mineral - particulate</td>
<td>4</td>
<td>blower</td>
<td>skiploader</td>
<td>R, I, W, P, DGC</td>
</tr>
<tr>
<td>polypropylene - mat</td>
<td>4</td>
<td>throw</td>
<td>skiploader</td>
<td>DGC, RT</td>
</tr>
</tbody>
</table>

Legend
- DGC: Not effective where ground cover is dense
- R: Not reusable
- I: Not incinerable
- P: Effectiveness reduced when rainy
- RT: Not effective where terrain is rugged
- SS: Not for use within environmentally sensitive sites
- W: Effectiveness reduced when windy

Reference: Sorbents for Liquid Hazardous Substance Cleanup and Control;

NOTE:
- Organic absorbents have been known to ignite when contaminated with amines in closed containers. Certain cellulosic materials used for spill cleanup such as wood chips or sawdust have shown reactivity with ethyleneamines and should be avoided.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

Contains low boiling substance:
Storage in sealed containers may result in pressure buildup causing violent rupture of containers not rated appropriately.
- Check for bulging containers.
- Vent periodically
- Always release caps or seals slowly to ensure slow dissipation of vapours
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- **WARNING:** To avoid violent reaction, **ALWAYS** add material to water and **NEVER** water to material.
- Avoid smoking, naked lights or ignition sources.
- Avoid contact with incompatible materials.
- When handling, **DO NOT** eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately. Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
- **DO NOT** allow clothing wet with material to stay in contact with skin

Other information

- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storage and handling recommendations contained within this SDS.
- **DO NOT** store near acids, or oxidising agents
- No smoking, naked lights, heat or ignition sources.

Conditions for safe storage, including any incompatibilities

- Glass container is suitable for laboratory quantities
- **DO NOT** use aluminium or galvanised containers
- Lined metal can, lined metal pail / can.
- Plastic pail.
- Polyliner drum.
- Packing as recommended by manufacturer.
- Check all containers are clearly labelled and free from leaks.
- For low viscosity materials
- Drums and jerricans must be of the non-removable head type.
- Where a can is to be used as an inner package, the can must have a screwed enclosure.
- For materials with a viscosity of at least 2680 cSt. (23 deg. C) and solids (between 15 C deg. and 40 deg C.):
 - Removable head packaging;
 - Cans with friction closures and
 - low pressure tubes and cartridges
 - may be used.
- Where combination packages are used, and the inner packages are of glass, porcelain or stoneware, there must be sufficient inert cushioning material in contact with inner and outer packages unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.
- Reacts with mild steel, galvanised steel / zinc producing hydrogen gas which may form an explosive mixture with air.
- Avoid strong acids, acid chlorides, acid anhydrides and chloroformates.
- Avoid contact with copper, aluminium and their alloys.
- Avoid reaction with oxidising agents

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

| OCCUPATIONAL EXPOSURE LIMITS (OEL) |
| INGREDIENT DATA |
| Not Available |

| EMERGENCY LIMITS |
| Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 |
| WANAMINE™IPDA | Not Available | Not Available | Not Available |

| Ingredient | Original IDLH | Revised IDLH |
| isophorone diamine | Not Available | Not Available |
MATERIAL DATA

Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA. OSHA (USA) concluded that exposure to sensory irritants can:

- cause inflammation
- cause increased susceptibility to other irritants and infectious agents
- lead to permanent injury or dysfunction
- permit greater absorption of hazardous substances and
- acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

Exposure controls

Appropriate engineering controls

- **CARE:** Use of a quantity of this material in confined space or poorly ventilated area, where rapid build up of concentrated atmosphere may occur, could require increased ventilation and/or protective gear
- Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.
- The basic types of engineering controls are:
 - Process controls which involve changing the way a job activity or process is done to reduce the risk.
 - Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.
 - Employers may need to use multiple types of controls to prevent employee overexposure.

General exhaust is adequate under normal operating conditions. Local exhaust ventilation may be required in special circumstances. If risk of overexposure exists, wear approved respirator. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. Provide adequate ventilation in warehouses and enclosed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

<table>
<thead>
<tr>
<th>Type of Contaminant:</th>
<th>Air Speed:</th>
</tr>
</thead>
<tbody>
<tr>
<td>solvent, vapours, degreasing etc., evaporating from tank (in still air).</td>
<td>0.25-0.5 m/s (50-100 f/min)</td>
</tr>
<tr>
<td>aerosols, fumes from pouring operations, intermittent container filling, low speed conveyor transfer, welding, spray drift, plating</td>
<td>0.5-1 m/s (100-200 f/min.)</td>
</tr>
<tr>
<td>acid fumes, pickling (released at low velocity into zone of active generation)</td>
<td>1-2.5 m/s (200-500 f/min.)</td>
</tr>
<tr>
<td>direct spray, spray painting in shallow booths, drum filling, conveyor loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)</td>
<td>2.5-10 m/s (500-2000 f/min.)</td>
</tr>
<tr>
<td>grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion)</td>
<td></td>
</tr>
</tbody>
</table>

Within each range the appropriate value depends on:

<table>
<thead>
<tr>
<th>Lower end of the range</th>
<th>Upper end of the range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Room air currents minimal or favourable to capture</td>
<td>1: Disturbing room air currents</td>
</tr>
<tr>
<td>2: Contaminants of low toxicity or of nuisance value only.</td>
<td>2: Contaminants of high toxicity</td>
</tr>
<tr>
<td>3: Intermittent, low production.</td>
<td>3: High production, heavy use</td>
</tr>
<tr>
<td>4: Large hood or large air mass in motion</td>
<td>4: Small hood-local control only</td>
</tr>
</tbody>
</table>

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 69]. [AS/NZS 1336 or national equivalent]

Eye and face protection

- Wear chemical protective gloves, e.g. PVC.
- Wear safety footwear or safety gumboots, e.g. Rubber

NOTE: The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.

Skin protection

See Hand protection below

Hands/feet protection

- Wear chemical protective gloves, e.g. PVC.
- Wear safety footwear or safety gumboots, e.g. Rubber

- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.
The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material cannot be calculated in advance and has therefore to be checked prior to the application. The exact breakthrough time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturizer is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:
- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).
- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- Contaminated gloves should be replaced.

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers’ technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:
- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.
- Leather wear not recommended: Contaminated leather footwear, watch bands, should be destroyed, i.e. burnt, as they cannot be adequately decontaminated.

Body protection
See Other protection below

Other protection
- Overalls.
- PVC Apron.
- PVC protective suit may be required if exposure severe.
- Eyewash unit.
- Ensure there is ready access to a safety shower.

Thermal hazards
Not Available

Respiratory protection

Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important.

<table>
<thead>
<tr>
<th>Required minimum protection factor</th>
<th>Maximum gas/vapour concentration present in air p.p.m. (by volume)</th>
<th>Half-face Respirator</th>
<th>Full-Face Respirator</th>
</tr>
</thead>
<tbody>
<tr>
<td>up to 10</td>
<td>1000</td>
<td>K-AUS / Class1 P2</td>
<td>-</td>
</tr>
<tr>
<td>up to 50</td>
<td>1000</td>
<td>-</td>
<td>K-AUS / Class1 P2</td>
</tr>
<tr>
<td>up to 50</td>
<td>5000</td>
<td>Airline *</td>
<td>-</td>
</tr>
<tr>
<td>up to 100</td>
<td>5000</td>
<td>-</td>
<td>K-2 P2</td>
</tr>
<tr>
<td>up to 100</td>
<td>10000</td>
<td>-</td>
<td>K-3 P2</td>
</tr>
<tr>
<td>100+</td>
<td></td>
<td>Airline**</td>
<td></td>
</tr>
</tbody>
</table>

* - Continuous Flow ** - Continuous-flow or positive pressure demand
A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.

76ak-p()
SECTION 10 STABILITY AND REACTIVITY

Reactivity

See section 7

Chemical stability

- Unstable in the presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerisation will not occur.

Possibility of hazardous reactions

See section 7

Conditions to avoid

See section 7

Incompatible materials

See section 7

Hazardous decomposition products

See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

WANAMINE™ IPDA

<table>
<thead>
<tr>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

isophorone diamine

<table>
<thead>
<tr>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral (rat) LD50: 1030 mg/kg[^2]</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Legend:

1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2 * Value obtained from manufacturer’s SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

ISOPHORONE DIAMINE

The following information refers to contact allergens as a group and may not be specific to this product.

Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

Based on a limited skin irritation study with rabbits and rats, isophorone diamine is deemed to be a strong irritant (duration of the exposure not reported) and corrosive after repeated application. Isophorone diamine is corrosive to the eyes of rabbits when tested according to OECD TG 405. Isophorone diamine was found to induce dermal sensitisation when tested according to OECD TG 406 in guinea pigs. From a number of publications there is evidence that frequent occupational exposure to isophorone diamine may lead to the development of allergic contact dermatitis in humans. No definite conclusion can be currently drawn on respiratory sensitisation.

From two 14-day inhalative exposure studies with rats no NOAEL could be determined. At the first study’s LOAEL of 18 mg/m³, degeneration/necrosis in the olfactory epithelium of the nose were observed. Trachea, larvae and lungs were affected at 200 mg/m³ and above (degeneration/necrosis, hyperplasia, squamous metaplasia). At the LOAEL of the follow-up study, i.e. at 2.2 mg/m³, reversible minimal to mild degeneration of respiratory nasal mucosa in the anterior dorsal nose was observed. In a subchronic drinking water study according to OECD TG 408, the administration of 150 mg/kg bw/day led to reduced absolute and relative kidney weights in male and female rats (histopathology being indicative for tubular nephrosis), while 59 mg/kg bw/day (males) and 62 mg/kg bw/day (females) were determined as a NOAEL.

Isophorone diamine was not mutagenic in bacteria and mammalian cell systems in vitro (Ames test according to Directive 84/449/EEC B.14 (1984) and HPRT test according to OECD TG 476 (1984)). It did not induce chromosomal aberrations in CHO cells in vitro in a test performed in accordance with OECD TG 473. In vivo mouse micronucleus tests (one performed according to OECD TG 474 (1983) for the induction of micronucleated polychromatic erythrocytes were clearly negative. From all in vivo and in vitro tests performed there is no evidence that isophorone diamine has a mutagenic or clastogenic potential.

No studies have been performed on the toxicity of isophorone diamine to reproduction.

Data from an oral 90-day study in rats according to OECD TG 408 did not reveal any adverse effects on the male and female reproductive organs. Isophorone diamine did not show any teratogenic or embryo/foetotoxic effects in a gavage study with rats performed in accordance with OECD TG 414 (2001) up to and including the highest tested dose level of 250 mg/kg bw/day. The NOAEL for maternal toxicity was 50 mg/kg bw/day, effects at 250 mg/kg bw/day were reduced food consumption and reduced body weight gain. The NOAEL for developmental toxicity is 250 mg/kg bw/day.

The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

Asthma-like symptoms may continue for months or even years after exposure to the material. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included...
Acute Toxicity

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Test Duration (HR)</th>
<th>Species</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC50</td>
<td>96</td>
<td>Fish</td>
<td>>70mg/L</td>
<td>1</td>
</tr>
<tr>
<td>EC50</td>
<td>48</td>
<td>Crustacea</td>
<td>17.4mg/L</td>
<td>4</td>
</tr>
<tr>
<td>EC50</td>
<td>72</td>
<td>Algae or other aquatic plants</td>
<td>>37mg/L</td>
<td>1</td>
</tr>
<tr>
<td>EC10</td>
<td>72</td>
<td>Algae or other aquatic plants</td>
<td>>0.1mg/L</td>
<td>1</td>
</tr>
<tr>
<td>NOEC</td>
<td>72</td>
<td>Algae or other aquatic plants</td>
<td><1.5mg/L</td>
<td>1</td>
</tr>
</tbody>
</table>

Carcinogenicity

- Data available but does not fit the criteria for classification

Skin Irritation/Corrosion

- Data available to make classification

Serious Eye Damage/Irritation

- Data not available to make classification

Respiratory or Skin sensitisation

- Data not available to make classification

STOT - Single Exposure

- Data not available to make classification

STOT - Repeated Exposure

- Data not available to make classification

Mutagenicity

- Data not available to make classification

Aspiration Hazard

- Data not available to make classification

Legend:

- ✓ - Data available
- ✗ - Data not available

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

<table>
<thead>
<tr>
<th>WANAMINE™ IPDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENDPOINT</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>isophorone diamine</td>
</tr>
<tr>
<td>LC50</td>
</tr>
<tr>
<td>EC50</td>
</tr>
<tr>
<td>EC50</td>
</tr>
<tr>
<td>EC10</td>
</tr>
<tr>
<td>NOEC</td>
</tr>
</tbody>
</table>

Legend:

Note:

- Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment. Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash waters. Wastes resulting from use of the product must be disposed of on site or at approved waste sites. For isophorone diamine: Persistence/Biodegradability: 42% (DOC, OECD 303A) 8.0% (DOC, Die away test -9/69/EEC) * " [Morton]

- Environmental fate:
 - Isophorone diamine has a melting point of 10 C, is miscible with water and has a vapour pressure of 0.02 hPa at 20 C. The measured log Kow is 0.99 (23 C). The pKa of approximately 10.4 characterises the substance as a moderate base.
 - According to a Mackay Level I model calculation, the main target compartment for isophorone diamine will be water (99.8 %), followed by sediment and soil (both 0.08 %). It has to be considered that under environmental relevant pH conditions the substance is available as cation and therefore the prediction of the environmental distribution using the data for the uncharged molecule is not appropriate. The calculated Henry’s law constant of 0.00046 Pa m³/mol indicates very low volatility from surface waters.
 - Dissociation in aqueous solution will further reduce the volatility. With a calculated Kow of 340.4 l/kg, the sorption potential to soil or sediment organic matter is expected to be moderate. However, as in the environment the substance is available as cation, binding to the matrix of soils with high capacities for cation exchange (e.g. clay) cannot be excluded.
 - In the atmosphere, isophorone diamine is rapidly removed by reaction with hydroxyl radicals with a calculated half-life of 0.2 days. In water, it is expected to hydrolyse at a low rate under environmental conditions (t1/2 > 1 year at 25 C). Photolytic degradation in surface waters is expected to be of minor importance due to the chemical structure. Isophorone diamine is not readily biodegradable (OECD 301A: 8 % after 28 days). However, in a simulation test with activated, non-adapted sludge, a degradation of 42 % (including a minor, though not negligible contribution by adsorption to sludge) was measured after a contact time of 6 hrs. The log Kow value of 0.99 indicates a low bioaccumulation potential.

- Ecotoxicity:
 - Fish LC50 (96 h): Leuciscus idus 110 mg/l; (48 h): 185 mg/l
 - Daphnia magna EC50 (48 h): 23 mg/l
 - Daphnia LC50 (24 h): 42 mg/l
 - Algae ErC50 (72 h): Scenedesmus subpictus <50 mg/l; EbC50 (72 h): 37 mg/l
 - Pseudomonas putida EC10 (16 h): 1120 mg/l
 - Long term aquatic toxicity data are available for two trophic levels: Daphnia magna: 21-d NOEC = 3.0 mg/l
 - Scenedesmus subpictus: 72-h ErC10 = 11 mg/l; 72-h EbC10 = 3.0 mg/l
 - An assessment factor of 50 was applied to the lowest of two long-term results covering two trophic levels. The PNEC of 0.06 mg/l for aquatic organisms was calculated from the NOEC for Daphnia = 3.0 mg/l.
 - Prevent, by any means available, spillage from entering drains or water courses.

DO NOT discharge into sewer or waterways.
Persistence and degradability

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>isophorone diamine</td>
<td>HIGH</td>
<td>HIGH</td>
</tr>
</tbody>
</table>

Bioaccumulative potential

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Bioaccumulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>isophorone diamine</td>
<td>LOW (BCF = 3.4)</td>
</tr>
</tbody>
</table>

Mobility in soil

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>isophorone diamine</td>
<td>LOW (KOC = 340.4)</td>
</tr>
</tbody>
</table>

Other adverse effects

No data available

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

- Containers may still present a chemical hazard/danger when empty.
- Return to supplier for reuse/recycling if possible.
- Otherwise:
 - If container cannot be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
 - Where possible retain label warnings and SDS and observe all notices pertaining to the product.
- Legislation addressing waste disposal requirements may differ by country, state and/or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.
- A Hierarchy of Controls seems to be common - the user should investigate:
 - Reduction
 - Reuse
 - Recycling
 - Disposal (if all else fails)
- This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.
- **DO NOT** allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Treatment should involve: Neutralisation with suitable dilute acid followed by: burial in a land-fill specifically licensed to accept chemical and/or pharmaceutical wastes or incineration in a licensed apparatus (after admixture with suitable combustible material).
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Waste chemicals:

- **Marine Pollutant**: NO

SECTION 14 TRANSPORT INFORMATION

Labels Required

- Marine Pollutant: NO

Land transport (UN)

<table>
<thead>
<tr>
<th>UN number</th>
<th>2289</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN proper shipping name</td>
<td>ISOPHORONEDIAMINE</td>
</tr>
<tr>
<td>Transport hazard class(es)</td>
<td>Class 8</td>
</tr>
<tr>
<td></td>
<td>Subrisk: Not Applicable</td>
</tr>
<tr>
<td>Packing group</td>
<td>III</td>
</tr>
<tr>
<td>Environmental hazard</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

Continued...
Special precautions for user

<table>
<thead>
<tr>
<th>Special provisions</th>
<th>Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limited quantity</td>
<td>5 L</td>
</tr>
</tbody>
</table>

Air transport (ICAO-IATA / DGR)

- **UN number**: 2289
- **UN proper shipping name**: Isophoronediamine
- **ICAO/IATA Class**: 8
- **ICAO / IATA Subrisk**: Not Applicable
- **ERG Code**: 8L
- **Packing group**: III
- **Environmental hazard**: Not Applicable

<table>
<thead>
<tr>
<th>Special precautions for user</th>
<th>Special provisions</th>
<th>A803</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cargo Only Packing Instructions</td>
<td>856</td>
</tr>
<tr>
<td></td>
<td>Cargo Only Maximum Qty / Pack</td>
<td>60 L</td>
</tr>
<tr>
<td></td>
<td>Passenger and Cargo Packing Instructions</td>
<td>852</td>
</tr>
<tr>
<td></td>
<td>Passenger and Cargo Maximum Qty / Pack</td>
<td>5 L</td>
</tr>
<tr>
<td></td>
<td>Passenger and Cargo Limited Quantity Packing Instructions</td>
<td>Y941</td>
</tr>
<tr>
<td></td>
<td>Passenger and Cargo Limited Maximum Qty / Pack</td>
<td>1 L</td>
</tr>
</tbody>
</table>

Sea transport (IMDG-Code / GGVSee)

- **UN number**: 2289
- **UN proper shipping name**: ISOPHORONEDIAMINE
- **IMDG Class**: 8
- **IMDG Subrisk**: Not Applicable
- **Packing group**: III
- **Environmental hazard**: Not Applicable

<table>
<thead>
<tr>
<th>Special precautions for user</th>
<th>EMS Number</th>
<th>F-A , S-B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Special provisions</td>
<td>Not Applicable</td>
</tr>
<tr>
<td></td>
<td>Limited Quantities</td>
<td>5 L</td>
</tr>
</tbody>
</table>

Transport in bulk according to Annex II of MARPOL and the IBC code

<table>
<thead>
<tr>
<th>Source</th>
<th>Product name</th>
<th>Pollution Category</th>
<th>Ship Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMO MARPOL (Annex II) - List of Noxious Liquid Substances Carried in Bulk</td>
<td>Isophoronediamine</td>
<td>Y</td>
<td>3</td>
</tr>
</tbody>
</table>

Precautions for Transport

- **Transportation precautions:**
 - Documentation covering all dangerous goods carried on the vehicle
 - The transport unit must be placarded and marked in accordance with relevant transporting requirements.
 - Personal protective equipment must be in sufficient quantities and suitable for use by the driver of the vehicle and where required for escape purposes, any other persons travelling in the vehicle.
 - Vehicles transporting dangerous goods need to be equipped with sufficient and adequate fire protection systems and emergency equipment to handle spillages.
 - Likely to be incompatible however refer to SDS for further details:
 - Class 2.1, 2.2, 2.2 (subrisk 5.1), 2.3, 3, 4.3, 5.2
 - If applicable, use appropriate types of segregation devices to isolate incompatible dangerous goods:
 - Routes for road vehicles should avoid heavily populated or environmentally sensitive areas, congested crossings or a concentration of people
 - Vehicle exhaust or hot engine components must be shielded to ensure cargo temperatures cannot be raised.

Suitable Containers

See section 7

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

<table>
<thead>
<tr>
<th>ISOPHORONE DIAMINE(2855-13-2) IS FOUND ON THE FOLLOWING REGULATORY LISTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>China Inventory of Existing Chemical Substances</td>
</tr>
<tr>
<td>China Inventory of Hazardous Chemicals (Chinese)</td>
</tr>
<tr>
<td>National Inventory Status</td>
</tr>
</tbody>
</table>
Other Information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

- **PC-TWA**: Permissible Concentration-Time Weighted Average
- **PC- STEL**: Permissible Concentration-Short Term Exposure Limit
- **ACGIH**: American Conference of Governmental Industrial Hygienists
- **STEL**: Short Term Exposure Limit
- **IDLH**: Immediately Dangerous to Life or Health Concentrations
- **OSF**: Odour Safety Factor
- **NOAEL**: No Observed Adverse Effect Level
- **LOAEL**: Lowest Observed Adverse Effect Level
- **TLV**: Threshold Limit Value
- **LOD**: Limit Of Detection
- **OTV**: Odour Threshold Value
- **BCF**: BioConcentration Factors
- **BEI**: Biological Exposure Index

Disclaimer

The information in the SDS applies only for the specified product and does not include mixtures of this product with other substances and mixtures. The SDS provides product safety information for personnel trained to use this product only.